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Can we estimate forest gross primary production from leaf lifespan? 
A test in a young Fagus crenata forest

Kohei Koyama* and Kihachiro Kikuzawa

Laboratory of Plant Ecology, Ishikawa Prefectural University, Ishikawa 921-8836, Japan

It has been well established that leaf longevity is linked to the carbon economy of plants. We used this relationship to 

predict leaf lifetime carbon gains from leaf lifespan, and estimated the gross primary production (GPP) of a young de-

ciduous forest of Japanese beech (Fagus crenata) located in central Japan. The light-saturated photosynthetic rates of the 

leaves were measured repeatedly during the growing season. We used the leaf lifespan to calculate the conversion coef-

ficient from the light-saturated photosynthetic rate into the realized leaf lifetime carbon gain under field conditions. The 

leaf turnover rate was estimated using litter traps. GPP was estimated as the product of lifetime carbon gain per unit of 

leaf mass, and the annual leaf turnover rate. The GPP of the forest in 2007 was estimated to be 1.2 × 103 g C m-2 y-1, which 

was within the range of previously reported GPP values of beech forests in Japan, and was close to the GPP of a European 

beech forest, as estimated by eddy flux measurements.
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INTRODUCTION

The gross primary production (GPP) of forests may 

function as a terrestrial carbon sink against climate 

change (Suwa et al. 2006, Canadell et al. 2007, Luyssaert 

et al. 2008, Saigusa et al. 2008, Lewis et al. 2009). GPP is 

also a fundamental energy and material source that oc-

curs in forest ecosystems as the result of litter input (Ku-

rokawa and Nakashizuka 2008, Litton and Giardina 2008), 

and the activity of ectomycorrhiza (Druebert et al. 2009). 

Recent “ecological scaling” theories have outlined simple 

relationships predicting ecosystem carbon gain from sin-

gle leaf photosynthesis (Sellers et al. 1992, Koyama and 

Kikuzawa 2009, 2010). However, these models are useful 

for the spatial integration of canopy photosynthesis. To 

estimate GPP, temporal integration over growing seasons 

is required (Thornley 2002). In service of this objective, 

numerical calculations (e.g. Hikosaka 2003) have been 

applied. However, a simple model for time-integration 

over the growing period has yet to be developed.

Leaf demography and longevity has been studied ex-

tensively in association with whole-plant carbon econ-

omy (Chabot and Hicks 1982, Ackerly and Bazzaz 1995, 

Franklin and Ågren 2002, Oikawa et al. 2004, 2008, Reich 

et al. 2004, Hikosaka 2005, Koyama and Kikuzawa 2008, 

2009, Mediavilla and Escudero 2009, Suárez 2010). Math-

ematical models predicted that higher photosynthetic 

rates in leaves would result in higher leaf turnover rates, 

accompanied by reduced leaf longevity (Kikuzawa 1991, 

Ackerly 1999, Hikosaka 2003). In support of this notion, 

a negative correlation was observed to exist between 

leaf lifespan and the instantaneous light-saturated leaf 

photosynthetic rate (Chabot and Hicks 1982, Koike 1988, 

Reich et al. 1991, 1997, Wright et al. 2004, Vincent 2006, 

Ishida et al. 2008, Nagano et al. 2009). Hence, it has been 

suggested that this lifespan-carbon gain relation can be 
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employed in the development of a quantitative model of 

ecosystem productivity (Saura-Mas et al. 2009). However, 

to the best of our knowledge, no study has yet success-

fully estimated GPP via this relationship.

Kikuzawa and Lechowicz (2006) recently proposed a 

scheme that predicts GPP over the growing period, us-

ing a simple model. In essence, they demonstrated that if 

the leaf lifespan is a function of the daily carbon gain of 

that leaf, then the leaf lifetime carbon gain can be viewed 

as an inverse function of the leaf lifespan. In this paper, 

we applied this method to estimate the GPP of a temper-

ate deciduous forest composed of Japanese beech (Fagus 

crenata). We combined leaf demography census, periodi-

cal measurements of light-saturated photosynthetic rate 

of sample leaves, and litter measurements, and convert-

ed the light-saturated photosynthetic rate into the leaf 

lifetime carbon gain value, by using the leaf lifespan.

Model

Our model is based on the model described by Kikuza-

wa and Lechowicz (2006), with some slight modifications. 

The relevant symbols are listed in Table 1. The two prin-

cipal assumptions here are as follows: 1) leaf lifespan is 

determined so as to maximize whole-plant carbon gain, 

in concert with the numerical model of Kikuzawa (1991) 

(for a more elaborate version of this model, see Takada et 

al. 2006). This model was also supported by the empirical 

data (Kikuzawa and Ackerly 1999). 2) Stand leaf biomass 

is constant for closed steady-state canopies (Tadaki 1986, 

1991). GPP (g C m-2 y-1) is the sum of leaf photosynthesis 

of all the leaves within a stand:

GPP  =  B  Ā
gross   

f          (g C m-2 y-1)                     (1)

B is the standing leaf biomass (g C/m2) and Ā
gross

 (g C 

g C-1 d-1) is the daily gross leaf photosynthetic rate aver-

aged over the leaf lifespan and over the stand. f (d/y) is 

the number of days on which photosynthesis was con-

ducted per year (i.e. growing season length). Eq. 1 can 

be rewritten by multiplying the right side by L
f
/L

f
 (= 1), 

where L
f
 denotes the functional leaf longevity (Kikuzawa 

and Lechowicz 2006):

GPP  =  (B  /  Lf ) (Lf   Āgross) f            (g C m-2 y-1)            (2)

Functional leaf longevity (L
f
) is the number of days on 

which the leaf actually carries out photosynthesis within 

its lifespan. For evergreen leaves in seasonal environ-

ments, L
f
 is the difference between the observed leaf 

lifespan (total number of days, for which one leaf exists) 

and the length of the unfavorable period for photosyn-

thesis (i.e. winter, dry season etc.). In the case of wet trop-

ics, as well as the case of deciduous leaves in a seasonal 

climate, L
f
 equals the observed leaf lifespan. Based on the 

assumption of constant stand leaf biomass, the ratio of 

stand leaf biomass B (g C/m2) and L
f
 (days) is assumed to 

be equal to the daily leaf turnover rate during the favor-

able season, which is denoted by p (g C m-2 d-1):

B   /   L
f
  = p

          
(g C m-2 d-1)                           (3)

The product of functional leaf longevity (L
f
) and daily 

leaf photosynthetic rate averaged over the leaf lifespan 

(Ā
gross

) is equivalent to the leaf lifetime gross carbon gain, 

which is denoted by G
g 
(g C/g C):

L
f    
Ā

gross   
=

  
G

g          
(g C/g C)                               (4)

By substituting Eq. 3 and Eq. 4 into Eq. 2, GPP can be re-

written as:

GPP  =  G
g   

p  f
           

(g C m-2 y-1)                        (5)

The product of p and f is an annual leaf carbon turn-

over rate (i.e. annual leaf death rate is assumed to be 

equal to the production rate). In essence, Eq. 5 expresses 

Table 1. List of the parameters

Symbol Units Definition

Āgross g C g C-1 d-1 Daily leaf photosynthetic rate averaged 
over leaf lifespan

Amax (0) g C g C-1 s-1 Light-saturated net photosynthetic rate 
at leaf expansion

Āmax g C g C-1 s-1 Light-saturated net photosynthetic rate 
for each leaf averaged over leaf lifespan

b days Potential leaf lifespan (see text)

B g C/m2 Standing leaf biomass

C (= 1.53) g C/g C Leaf construction cost (Griffin 1994)

f d/y Growing season length

Gg, Gn g C/g C Leaf-lifetime gross (g) and net (n) 
carbon gain per unit leaf carbon mass

Lf days Functional leaf longevity (see text)

m s/d Mean labor time (see text)

p g C m-2 d-1 Daily leaf production rate during 
growing season

p f g C m-2 y-1 Annual leaf production rate

R g C/g C Leaf-lifetime respiration loss per unit 
leaf carbon
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GPP as the product of the “amount of carbon produced 

per unit leaf carbon through its lifecycle (G
g
)” and the 

“annual leaf-carbon lifecycle turnover rate (p f )”. Those 

equations are generic, in the sense that they may be ap-

plicable to ecosystems with different lengths of growing 

season (wet tropics, dry tropics, temperate, etc.), as well 

as with different leaf lifespans (deciduous, evergreens 

which has leaf lifespan longer than one year, etc.). G
g
 is 

the sum of leaf-lifetime net carbon gain G
n
 (g C/g C) and 

leaf-lifetime respiration R (g C/g C):

G
g  

=  G
n  

+  R
          

(g C/g C)                        (6)

G
n
 can be expressed as the product of the three following 

parameters:

G
n 

= 
 
Ā

max  
m  L

f          
(g C/g C)                  (7)

Ā
max

 (g C g C-1 s-1) is an instantaneous light-saturated 

net photosynthetic rate averaged over the leaf lifespan, 

and m (s/d) is a conversion coefficient from light-satu-

rated rate into the actual net photosynthetic rate aver-

aged over its lifespan realized at the site, and referred to 

as the “mean labor time” (Kikuzawa et al. 2004). m is a 

combination of all the factors that decide the actual pho-

tosynthetic rates of leaves under each field condition, 

including the diurnal solar cycle, weather, self-shading, 

and midday depression. In a previous study (Kikuzawa 

et al. 2004), all of those factors were measured in order to 

calculate m. In this study, we employed an optimal leaf 

longevity theory (Kikuzawa 1991) to estimate m. This is 

based on the notion that, when an optimal leaf lifespan is 

a function of the leaf carbon budget, the leaf carbon gain 

should be an inverse function of the leaf lifespan. Kiku-

zawa and Lechowicz (2006) then proposed an equation 

to calculate m from the leaf lifespan:

( )2
max (0) f  2   /   m b C A L=

         
(s/d)              (8)

m is conventionally expressed as seconds per day (Ki-

kuzawa et al. 2004). A
max (0)

 (g C g C-1 s-1) is the mass-based 

light-saturated net photosynthetic rate of a fully expand-

ed leaf. b (days) is the time at which the light-saturated 

photosynthetic rate of each leaf becomes zero, assuming 

the linear decline of light-saturated photosynthetic rate 

with respect to time. C (g C/g C) is the construction cost 

of a leaf, defined as the amount of carbon material re-

quired to construct one unit of leaf carbon mass. In this 

study, C was assumed to be 1.53 g C/g C (Griffin 1994). 

The substitution of Eqs. 6, 7 and 8 into Eq. 5 resulted in 

the following:

GPP  =  { Ā
max max f2

max (0) f

2  GPP  { }
 

b CÂ L R pf
A L

 
= +  

 
        

(g C m-2 y-1)   (9)

MATERIALS AND METHODS

Species and site

Fagus crenata Blume is a late-successional deciduous 

canopy tree found in mountainous forests throughout Ja-

pan, and is a major component of those forests (Okaura 

and Harada 2002). The study site employed herein was 

the Ishikawa Prefectural Forest Experiment Station at the 

foot of Mt. Hakusan in central Japan (36˚25' N, 136˚38' 

E, 200 m a.s.l.). The mean annual temperature and mean 

annual precipitation were 13.0oC and 2,438 mm, respec-

tively (Ishikawa Prefectural Forest Experiment Station 

2008). The stand was a 14 year-old plantation of Japanese 

beech (Fagus crenata Blume). There were 130 trees in an 

area of 171 m2, and the heights of the trees were 4-5 m 

and the mean diameter at breast height was 4 cm in 2006. 

The canopy was fairly closed, and there was almost no 

understory vegetation.

Measurement of photosynthesis

In 2007, a scaffolding tower that reached the canopy 

was constructed. A total of 16 leaves were selected from 

four trees from the entire position of the canopy (0.8-

4.7 m from the ground). Sample leaves were selected 

from different heights, so as to represent the entire leaf 

population (Fig. 1). Photosynthesis measurements were 

repeated for the same leaves 6-13 times, from May to 

November of 2007. The number of measurements was 

smaller for the leaves that fell earlier. The photosynthetic 

rate of each leaf was measured using a portable infrared 

gas analyzer (LI-6400; LI-COR, Lincoln, NE, USA). Photo-

synthetic photon flux density (PPFD) 1,500 μmol m-2 s-1 

was supplied until the equilibration of the leaf with an 

LED light source (LI-6400-02B; LI-COR) within the cham-

ber. The equilibration required 10-20 minutes for the 

upper-canopy leaves, and 20-30 minutes for the lower-

canopy leaves. CO
2
 concentrations inside the chamber 

were controlled at 350 ppm. We did not control the air 

temperature inside the chamber, which ranged from 22-

30°C. Measurements were conducted from 8 to 11 a.m. 

each day. After each measurement, PPFD was changed 

to zero, and after equilibration (10-20 minutes), the dark 

respiration rate was measured. The gross light-saturated 
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photosynthetic rate of the leaves on each day is acquired 

as the sum of the light-saturated net photosynthetic rate 

and the dark respiration rate.

For each of the monitored leaves, we sampled three 

adjacent leaves on the same horizontal branch in the 

summer. The areas of those leaves were determined 

via the analysis of digitally-scanned images with Adobe 

Photoshop Elements (Adobe Systems Inc., San Jose, CA, 

USA). The leaf samples were then oven-dried at 70oC to 

a constant weight and weighed. The mean leaf mass per 

area of each of those three leaves was used as surrogate 

values for each of the monitored leaves. Using them, ar-

ea-based photosynthetic- and respiration rates for each 

leaf were converted into mass-based values. Those leaf 

masses and the leaf litter were converted as follows: 1 g 

dry leaf = 0.5 g C (Yamasaki and Kikuzawa 2003), in order 

to obtain the carbon-based values.

Leaf demography

Sample leaves for the photosynthesis measurements 

were monitored from leaf emergence until fall at 7-23-

day intervals in 2007. Functional leaf longevity (L
f
) was 

calculated as the difference between leaf emergence and 

fall, as those leaves were detected only during the grow-

ing season. Ten litter traps (0.17 m2 for each) were set on 

the stand floor such that they were evenly distributed 

throughout the entire forest. The litters were collected 

every month from April to November, and separated into 

leaves and branches. The leaves were oven-dried at 70oC 

to a constant weight and weighed. The annual leaf pro-

duction rate (p f ) is assumed to be equal to the annual 

leaf fall from the beech trees, assuming that the loss by 

herbivory was negligible.

Data analysis for photosynthesis

The lifetime maximum instantaneous light-saturated 

net photosynthetic rate is used as the A
max (0)

 for each leaf 

(Kikuzawa 1991). The Ā
max

 was calculated as the lifetime 

average of the net light-saturated photosynthetic rate for 

each leaf. The slope of the linear regression of the light-

saturated photosynthetic rate with time was calculated 

and tested via Microsoft Excel (t-test). The time at which 

the light-saturated photosynthetic rate of each leaf be-

comes zero (b) was estimated via the regression line.

RESULTS AND DISCUSSION

The results were summarized in Table 2. F. crenata is 

a representative species of simultaneous leaf emergence 

and fall (Kikuzawa 1983, 2003). At the study site, all of 

the leaves emerged almost simultaneously in late April, 

and the leaf fall was concentrated in October or Novem-

ber. The mean functional leaf lifespan (L
f
) of the sample 
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Fig. 1. Vertical distribution of the monitored leaves within the canopy. 
Each closed circle indicates one monitored leaf (N = 16). The broken line 
depicts the vertical distribution of all the leaves in the canopy (estimated 
by spot-measurements using a vertical measuring pole at 25 places with-
in the stand, N = 235 leaves). The vertical axis shows the relative position 
(i.e. cumulative leaf numbers of each kind of the leaves from top to that 
height, divided by the total number of leaves of that type. The circles were 
distributed along the broken line. This indicates that each monitored leaf 
(e.g. the middle leaf among the monitored leaf ) exists at a similar height 
as that of the middle leaf throughout the entire canopy.

Table 2. The estimated parameters in 2007

Symbol Units Mean value (range) for the monitored leaves

Amax (0) g C g C-1 s-1 3.6 × 10-6 (2.0 × 10-6-5.4 × 10-6)

Āmax g C g C-1 s-1 2.4 × 10-6 (1.2 × 10-6-4.0 × 10-6)

b days           241 (156-323)

Gg g C/g C             7.6 (5.8-9.7)

Gn g C/g C             2.8 (1.9-4.6)

Lf days           183 (123-217)

m s/d        6,574 (3,770-11,295)

p f g C m-2 y-1        161.6

R

GPP

g C/g C

g C m-2 y-1

           4.9 (2.9-5.9)

   1.2 × 103

We have calculated all of those parameters via Eqs. 1-9 for each of 
the monitored leaves, and each mean value for each of the estimated 
parameters averaged over the sample leaves (N = 16) is shown in the 
table. Those are not exactly equal to the ones, which are calculated by 
substituting those mean values into the equations.
GPP, gross primary production.
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leaves was 183 days. In addition to those sampled leaves, 

we also measured a total of 1,066 leaves from the entire 

position of the canopy, to determine the lifespans of the 

sample leaves. The mean lifespan of the additional 1,066 

leaves was 184 days, which was similar to those of the 

monitored leaves, thereby indicating that the lifespans 

of those sample leaves represented those of the entire 

canopy.

The light-saturated net photosynthetic rate of each 

leaf reduced in an almost linear fashion after full expan-

sion (Fig. 2). The slope of the linear regression of light-

saturated photosynthetic rate with time was found to be 

significant for all the leaves (P < 0.05, r2 = 0.52-0.96, N = 

16). The decline of photosynthetic capacity with increas-

ing leaf age has been observed commonly among woody 

species (Koike 1990, Kitajima et al. 2002, Kikuzawa 2003, 

Mediavilla and Escudero 2003, Ito et al. 2006, Han et al. 

2008, Kikuzawa et al. 2009, Reich et al. 2009). However, 

the decline of photosynthetic capacity was frequently not 

precisely linear, but rather curvilinear (cf. Koike 1990). 

Hence, the linear regression was a simplified approxima-

tion, and more elaborated models should incorporate 

the curvilinear change characteristics of photosynthetic 

capacity.

The estimated GPP of the forest (1.2 × 103 g C m-2 y-1) 

was within the GPP range of beech forests in central Ja-

pan (0.57 × 103-1.56 × 103 g C m-2 y-1, assuming that 1 g dry 

matter = 0.44 g C) previously reported by Kakubari (1991), 

which employs the conventional allometric method. This 

was also similar to the GPP range for a 30-year old Euro-

pean beech forest (1,000-1,300 g C m-2 y-1), which was es-

timated via eddy flux measurements (Granier et al. 2000). 

To the best of our knowledge, this is the first application 

of the leaf lifespan theory to the calculation of GPP. Al-

though our method may be less accurate than the pres-

ent eddy flux measurements, our theoretical approach 

produced a value proximate to the actual one.

The principal assumption of this model is that leaf 

longevity is determined so as to maximize whole-plant 

carbon gains in concert with the numerical model de-

veloped by Kikuzawa (1991). Many previous reports 

conducted in the tropics have corroborated the carbon-

economy model (e.g. Reich et al. 1991, 1999, 2004, Vin-

cent 2006). However, leaf longevity should be susceptible 

to the effects of strong seasonality in temperate regions 

(Reich et al. 2004, Vincent 2006, Koyama and Kikuzawa 

2008). Nonetheless, two lines of evidence appear to sug-

gest that leaf longevity in temperate regions functions 

as an indicator of the carbon budget of a plant. Firstly, 

temperate species were included in the worldwide leaf 

economic spectrum (Reich et al. 1997, 1999, Ackerly and 

Reich 1999, Wright et al. 2004, He et al. 2009). If the effect 

of seasonality is predominant, species in the temperate 

region should be outliers within those spectra; however, 

this is not the case. Secondly, variations in leaf longev-

ity in temperate regions have also been predicted by car-

bon economy models (Hikosaka 2005, Oikawa et al. 2006, 

2008). Even within the same temperate forest, deciduous 

and evergreen leaf habits coexist in microclimates, with 

deciduous trees tending to be found in more productive 

environments (Monk 1966, Chabot and Hicks 1982, Ki-

kuzawa 1984, Koyama and Kikuzawa 2008). Leaf longev-

Fig. 2. Decline of light-saturated photosynthetic rate. Each panel shows one leaf. Each open circle indicates one measurement. Two representative leaves 
from the upper and lower canopy are shown. Solid lines show significant linear regressions (P < 0.05).
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ity in temperate regions should, assumedly, reflect the 

carbon economy of plants. Hence, the method presented 

herein should be globally applicable, based on the gener-

ality of the leaf economic spectra.
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