1 Published in Ecological Research (2011) 26: 999-1006.
2 DOI 10.1007/s11284-011-0859-7
3

4 Note and Comments
5

6 Title:
7 Reduction of photosynthesis before midday depression occurred: leaf photosynthesis of
8 Fagus crenata in relation to canopy position and a number of days after rainfall.
9

10 Authors:
11 Kohei Koyama ${ }^{1 *}$, Kihachiro Kikuzawa ${ }^{1}$
12

13 *Corresponding author.
14
$15{ }^{1}$ Laboratory of Plant Ecology, Ishikawa Prefectural University, Suematsu, Nonoichi, 16 Ishikawa, 921-8836, Japan

18 (*) Email address: kkoyama < at >ishikawa-pu.ac.jp

Abstract hypothesis (Sellers et al. 1992; Dewar et al. 1996; Haxeltine and Prentice 1996;
but apparent depression occurred in the eighth day. Nakai et al. (2010) also reported in the experiment of Salix gracilistyla cuttings, that the longer the drought treatment, the more stomatal limitation on photosynthesis. However, those studies did not investigate the difference of stomatal limitation between canopy positions.

Within a single canopy, a limiting factor for photosynthesis may differ among different positions. Firstly, leaves from different positions within a canopy themselves differ morphologically, chemically, anatomically and physiologically. This is observed in Fagus crenata (Uemura et al. 2000; Yamasaki and Kikuzawa 2003; Iio et al. 2005; 2009; Koyama and Kikuzawa 2010ab), other temperate deciduous trees (Niinemets 1995; 2010; Koyama and Kikuzawa 2010b; Yoshimura 2010) and temperate evergreens (Hozumi and Kirita 1972; Katahata et al. 2007). Also, leaves on higher position may have smaller water reserves (Jarvis 1976) and / or longer water pathway from root (Ryan et al. 2006). Hence, it is expected that a degree of stomatal limitation of photosynthesis should differ among different canopy positions. However, in most of the previous studies, the effect of canopy position was not investigated (cf. Tazaki et al. 1980; Zotz and Winter 1996; Muraoka et al. 2000; Ishida et al. 1999a; 2000; Valladares et al. 2008; Misson et al. 2010; Nakai et al. 2010). For other studies which investigated different canopy positions, the temporal pattern in relation to soil water conditions was not investigated (cf. Muraoka and Koizumi 2005; Iio et al. 2009). To date, knowledge on the interaction between soil water condition and canopy position is very limited (cf.

Niinemets et al. 2004). Regarding the above argument, it is necessary to simultaneously investigate both of the above two factors (Niinemets and Valladares 2004). The aim of this study is to elucidate spatial and temporal pattern of efficiency of photosynthetic rate under field condition in a Japanese beech forest (Fagus crenata Blume). We tested the following two hypotheses. (1) Daytime reduction of photosynthesis was apparent for the upper leaves, but not for the lower leaves. (2) This reduction was interactively affected by the soil water condition. There will be no apparent reduction in daily photosynthetic rate just after a rainfall, but will be a significant reduction when the number of days after the last rainfall increased.

Methods

Species and Site

Fagus crenata Blume is a late-successional deciduous canopy tree distributed in mountainous regions in Japan (Matsui et al. 2004). The site was a 15 -year-old plantation in the Ishikawa Prefectural Forest Experiment Station $\left(36^{\circ} 25^{\prime} \mathrm{N}, 136^{\circ} 38^{\prime}\right.$ E, elevation 220 m), which is located at the foot of Mt. Hakusan. At the plantation, 130 trees were planted in 1995 in the area of $171 \mathrm{~m}^{2}$. Those trees were grown by seeds from Mt . Hakusan (Jiro Kodani, personal communication), and hence they should belong to the Japan Sea coast haplotypes (cf. Okaura and Harada 2002). The stand height and the mean DBH were around 6 m and 4.7 cm in 2008, respectively. The canopy was closed $24.2^{\circ} \mathrm{C}$ and 182 mm , respectively, being not greatly different from the normal years.

111 The above data were from the Annual Report of the Ishikawa Prefectural Forest 112 Experiment Station (2003-2008).

114
 Photosynthesis measurement

115 A total of 91 mm rainfall was observed within two days in 27 and 28 July 2008 at the plastic funnel-top container set above the canopy. The measurements were conducted on
the 1st, the 3rd and the 5th day after the last rainfall on 28 July. We used two portable photosynthesis systems (LI-6400, LI-COR, Lincoln, USA), with CO_{2} supply inside the chambers kept at 350 ppm . Four leaves on the upper part of the canopy (i.e. "the upper leaves") were selected from one branch at the height of 5.7 m . Those were accessed by a scaffolding tower. Another four leaves on the lower canopy (i.e. "the lower leaves") were selected from one branch on an adjacent tree at the height of 1.5 m , as there were no accessible lower leaves on the same tree. For each position (the upper and lower), incident photosynthetically active photon flux density (PPFD) were measured for seven times with 1-2 hours intervals during daytime (8:30-16:00) with a quantum sensor (IKS-27, KOITO Kogyo, Yokohama, Japan) placed above the branch of those leaves. Hence, the angle of each leaf was not considered in this study. Net photosynthetic rates of those intact leaves at each moment were measured by the two LI-6400s under the PPFD of the same intensity just recorded on those leaves on each occasion, which were supplied by the LED light sources (LI-6400-02B). On each occasion, the PPFDs were kept constant until the equilibration of the leaves (typically, 20-40 min). Leaf conductance to $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\left(\mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$, leaf temperature, and vapor pressure deficit based on leaf temperature (VPD) (kPa) were simultaneously calculated by the LI-6400s. In the following, we will regard g as equivalent to leaf stomatal conductance, assuming that leaf boundary layer resistance was negligible. Immediately after each occasion of the photosynthetic measurement, dark respiration rate was measured with zero light.

140 of the same sample leaves with the same LI-6400s. Those measurements were 141 conducted from 9:30 to 11:30 a.m., intermittently between the in-situ photosynthesis 142 measurements described above. For the lower leaves, all the four leaves were measured on the 1st day. For the upper leaves, as we could not finish the measurement on the 1st day, each two of the four leaves were measured on the 1st and the 3rd day. On each measurement, the leaves were firstly induced by PPFD $=1500 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ until equilibration. Then, PPFD was changed from higher to lower (2000, 1500, 1000, 750, 500, 250, 125, 63, 32 and $0 \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$) with the LEDs. On each occasion of the change, PPFD was kept constant until the equilibration of the leaves. During those light-response measurements, leaf temperatures were not controlled and ranged $28.6^{\circ} \mathrm{C}$ $-33.2^{\circ} \mathrm{C}$ and $28.1^{\circ} \mathrm{C}-31.9^{\circ} \mathrm{C}$ for the upper and the lower leaves, respectively.

Data analysis
Diurnal course of in-situ gross photosynthetic rate $\left(P_{\mathrm{g} _ \text {mes }}, \mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}\right)$ for each leaf was calculated as the sum of net photosynthesis and dark respiration rate at each moment. We set another open-sky PPFD sensor set above the canopy during the measurement days, and we set $P_{\mathrm{g} _ \text {mes }}$ at the dawns and the sunsets as both zeros (i.e. when the open-sky PPFD became zero) on each day. Daily photosynthesis for each leaf was estimated by interpolations of those $P_{\mathrm{g}_{\mathrm{Z}} \text { mes }}$ values.

We alternatively calculated hypothetical diurnal courses of gross photosynthetic rate, estimated solely by the diurnal change of the light intensity. Each net photosynthetic rate during the light-response measurement (from PPFD 0 to 2000 $\mu \mathrm{mol} \mathrm{m} \mathrm{m}^{-2} \mathrm{~s}^{-1}$, see above) were converted to gross photosynthetic rate by adding dark respiration rate (PPFD $=0$). Then, non-rectangular hyperbola (Marshall and Biscoe 1980) was fitted by KaleidaGraph 4 (Synergy Software, Reading, USA) $\left(r^{2}>0.997\right)$:

$$
P_{\mathrm{z}, \mathrm{cv}}=\frac{\Phi I+P_{\max }-\sqrt{\left(\Phi I+P_{\max }\right)^{2}-4 \theta \Phi I P_{\max }}}{2 \theta} \quad\left(\mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2}\right)
$$

Eq. 1

In Eq. 1, $P_{\mathrm{g} _c v}\left(\mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$ indicates a curve-estimated gross photosynthetic rate at each incident PPFD intensity ($I, \mu \mathrm{~mol} \mathrm{~m} \mathrm{~m}^{-2}$). $P_{\max }$ indicates maximum gross photosynthetic rate of that leaf when I approaches infinity. The other two parameters, ϕ ($\mu \mathrm{mol} \mu \mathrm{mol}^{-1}$) and θ (dimensionless) indicate initial slope and convexity, respectively. The curve-estimated photosynthetic rate $\left(P_{\mathrm{g} _c}, \mu \mathrm{~mol} \mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$ at each time was estimated by substituting the same incident PPFD as was used in the in-situ photosynthetic rate described above into Eq. 1 with each different set of parameters $P_{\text {max }}, \phi$ and θ for each different leaf. We used each single set of parameters for each leaf, such that same photosynthetic light response curves were assumed throughout the five measurement days. In other words, we hypothetically fixed conditions of the leaves at the time of

Results

199 Upper leaves had higher maximum gross photosynthetic rate ($P_{\mathrm{g} _\max }$) and dark 200 respiration rate (Table 1), which is consistent with the previous studies (lio et al. 2005; 201 Koyama and Kikuzawa 2010b). Diurnal course of in situ gas exchange rate ($P_{\text {g_mes }}$) number of days after the last rain increased (Fig. 3). The $P_{\mathrm{g}_{\mathrm{m}} \mathrm{mes}} / P_{\mathrm{g} _c v}$ were strongly and
positively correlated with leaf conductance to $\mathrm{H}_{2} \mathrm{O}$ for the upper leaves, but there were no consistent relationships for the lower leaves (Fig. 4).

Discussion

We found a clear difference between canopy positions; only the upper leaves showed declining trends in photosynthetic efficiency (Fig. 2). We estimated the percentage loss of daily gross photosynthetic rate due to this decline as follows. When $P_{\mathrm{g} _ \text {mes }} / P_{\mathrm{g} _c v}$ of one particular time (say, 15:00) on one day was 0.85 , while $P_{\mathrm{g}_{\mathrm{mes}}} / P_{\mathrm{g} _ \text {cv }}$ of the earliest morning within that day was 1.1 (see Fig. 2 upper), we calculated the ratio 1.1 / 0.85 (= 1.3). It means that leaves in the earliest morning can conduct 1.3 times more photosynthesis than the actual leaf exists at 15:00 under the same PPFD observed at 15:00. Then, we calculated product of this ratio and $P_{\text {g_mes }}$ on each time on each day. It is the estimation of hypothetical photosynthetic rate conducted by a leaf, being "fixed" at the condition of that in the earliest morning, whilst PPFD on that leaf was changed as the same way as the actual diurnal course. Finally, we calculated potential gross daily photosynthetic rate by the interpolation of those values as the same manner as the above actual ones. Compared with those potential values, actual gross daily photosynthetic rates were 12% and 1% less for the upper and the lower leaves, respectively. Hence, the reduction was modest for the upper leaves, and did not exist for the lower leaves. Those results supported the hypothesis that photosynthesis is constrained more greatly for the

Stomatal limitation was expected to be higher for the upper leaves, which were exposed to high light environment (Niinemets and Valladares 2004). In addition, leaves on the higher position may have smaller water reserves (Jarvis 1976), longer water pathway from root (Ryan et al. 2006) and, specifically for tall trees, less water potential due to gravitation (Ishii et al. 2008; Nabeshima and Hiura 2008). Another mechanism suggested that sunlit upper leaves may have more water supplies by a selective investment of water into favorable sunlit leaves (Sprugel et al. 2002). In this study (6 m height), the gravitational effect should be negligible. However, we could not separate each of those confounding effects, as we selected upper and lower leaves from different individuals. Hence, before generalizing our results to other forests, mechanistic measurements including investigation of water supply on each position is needed to separate those factors.

We did not measured photoinhibition. Actual reduction is caused by both stomatal limitation and photoinhibition (Ishida et al. 1999abc; 2000; 2001; Muraoka et al. 2000; Werner et al. 2001; Valladares and Pearcy 2002; Yamazaki et al. 2007; Misson et al. 2010). Uemura et al. (2005) discussed that the reduction of photosynthesis in another Fagus crenata forest was due to photoinhibition, rather than stomatal closure. Our results showed that at least some part of reduction of photosynthesis was related to stomatal closure, which did not violate the conclusion by those studies.

We used LED light-sources, such that an effect of heat loading (Ishida et al. Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. Symp terms of optimal plant nitrogen content. Ann Bot 78:125-36

312 Farquhar GD (1989) Models of integrated photosynthesis of cells and leaves. Phil Trans Roy Soc Lond B 313 323:357-367 Field C (1983) Allocating leaf nitrogen for the maximization of carbon gain: Leaf age as a control on the allocation program. Oecologia 56:341-347

Granier A, Pilegaard K, Jensen NO (2002) Similar net ecosystem exchange of beech stands located in

France and Denmark. Agric For Meteorol 114:75-82

Ishida A, Nakano T, Matsumoto Y, Sakoda M, Ang LH. (1999a) Diurnal changes in leaf gas exchange and

Ishida A, Toma T, Marjenah (1999b) Limitation of leaf carbon gain by stomatal and photochemical processes in the top canopy of Macaranga conifera, a tropical pioneer tree. Tree Physiol 19:467-473 Ishida A, Toma T, Marjenah (1999c) Leaf gas exchange and cholorphyll fluorescence in relation to leaf angle, azimuth, and canopy position in the tropical pioneer tree, Macaranga conifera. Tree Physiol 19:117-124

Ishida A, Toma T, Ghozali DI, Marjenah (2000) In situ study of the effects of elevated temperature on photoinhibition in climax and pioneer species. In: Guhardja E, Fatawi M, Sutisna M, Mori T, Ohta S (eds) Rainforest Ecosystems of East Kalimantan: El Niño, Drought, Fire and Human Impacts. Ecological Studies 140. Springer, Tokyo, pp 269-280

Ishida A, Nakano T, Uemura A, Yamashita N, Tanabe H, Koike N (2001) Light-use properties in two sun-adapted shrubs with contrasting canopy structures. Tree Physiol 21:497-504

Ishikawa Prefectural Forest Experiment Station (2008) Ishikawaken Ringyo Shikenjyo Gyomu hokoku, year 2003-2007 (online files downloaded in 2010)

Ishii HT, Jennings GM, Sillett SC, Koch GW (2008) Hydrostatic constraints on morphological exploitation of light in tall Sequoia sempervirens trees. Oecologia 156:751-763 Ito A (2008) The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using AsiaFlux data. Agric For Meteorol 148:738-747 Ito A (2010) Changing ecophysiological processes and carbon budget in East Asian ecosystems under near-future changes in climate: implications for long-term monitoring from a process-based model. Journal of Plant Research 123:577-588 Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Trans Roy Soc Lond B 273:593-610 Joo SJ, Park MS, Kim GS, Lee CS (2011) CO_{2} flux in a cool-temperate deciduous forest (Quercus mongolica) of Mt. Nam in Seoul, Korea. J Ecol Field Biol 34:95-106

Kamiyama C, Oikawa S, Kubo T, Hikosaka K (2010) Light interception in species with different functional groups coexisting in moorland plant communities. Oecologia 164:591-599 Katahata S, Naramoto M, Kakubari Y, Mukai Y (2007) Seasonal changes in photosynthesis and nitrogen allocation in leaves of different ages in evergreen understory shrub Daphniphyllum humile. Trees 21:619-629

Kato T, Tang Y (2008) Spatial variability and major controlling factors of CO_{2} sink strength in Asian terrestrial ecosystems: evidence from eddy covariance data. Glob Change Biol 14:1-16 Katul G, Manzoni S, Palmroth S, Oren R (2010) A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Ann Bot 105:431-442 Kikuzawa K, Shirakawa H, Suzuki M, Umeki K (2004) Mean labor time of a leaf. Ecol Res 19:365-374 Kitaoka S, Watanabe Y, Koike T (2009) The effects of cleared larch canopy and nitrogen supply on gas exchange and leaf traits in deciduous broad-leaved tree seedlings. Tree Physiol 29:1503-1511 Koyama K, Kikuzawa K (2008) Intraspecific variation in leaf life span for the semi-evergreen liana Akebia trifoliata is caused by both seasonal and aseasonal factors in a temperate forest. J Ecol Field Biol 31: 207-211

Koyama K, Kikuzawa K (2009) Is whole-plant photosynthetic rate proportional to leaf area? A test of Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen
concentration and leaf mass per unit area. Plant Cell Environ 25:343-357

394

395

Mooney HA, Gulmon SL (1979) Environmental and evolutionary constraints on the photosynthetic
scalings and a logistic equation by leaf demography census. Am Nat 173:640-649

Koyama K, Kikuzawa K (2010a) Can we estimate forest gross primary production from leaf lifespan? A test in a young Fagus crenata forest. J Ecol Field Biol 33:253-260. DOI: 10.5141/JEFB.2010.33.3.253

Koyama K, Kikuzawa K (2010b). Geometrical similarity analysis of photosynthetic light response curves, light saturation and light use efficiency. Oecologia 163:53-63. DOI 10.1007/s00442-010-1638-9 Leuning R (1995) A critical appraisal of combined stomatal-photosynthesis model for C_{3} plants. Plant Cell Environ 18:339-355

Luyssaert S, Schulze ED, Börner A, Knohl A, Hessenmöller D, Law BE, Ciais P, Grace J (2008) Old-growth forests as global carbon sinks. Nature 455:213-215 Marshall B, Biscoe PV (1980) A model for C3 leaves describing the dependence of net photosynthesis on irradiance. I. Derivation. J Exp Bot 31:29-39

Matsui T, Yagihashi T, Nakaya T, Tanaka N, Taoda H (2004) Climatic controls on distribution of Fagus crenata forests in Japan. J Veg Sci 15:57-66. DOI: 10.1111/j.1654-1103.2004.tb02237.x

Misson L, Limousin J-M, Rodriguez R, Letts MG (2010) Leaf physiological responses to extreme droughts in Mediterranean Quercus ilex forest. Plant Cell Environ 33:1898-1910
characteristics of higher plants. In: Solbrig OT, Jain S, Johnson GB, Raven PH (eds) Topics in plant

398
399 400

401 402

Muraoka H, Tang Y, Terashima I, Koizumi H, Washitani I (2000) Contributions of diffusional limitation, Nabeshima E, Hiura T (2008) Size-dependency in hydraulic and photosynthetic properties of three Acer species having different maximum sizes. Ecol Res 23:281-288

411 Nagano S, Nakano T, Hikosaka K, Maruta E (2009) Needle traits of an evergreen, coniferous shrub 412 growing at wind-exposed and protected sites in a mountain region: does Pinus pumila produce needles 413 with greater mass per area under wind-stress conditions? Plant Biol 11:94-100 Nakai A, Yurugi Y, Kisanuki H (2010) Stress responses in Salix gracilistyla cuttings subjected to repetitive alternate flooding and drought. Trees 24:1087-1095

416 Niinemets Ü (1995) Distribution of foliar carbon and nitrogen across the canopy of Fagus sylvatica: 417 adaptation to a vertical light gradient. Acta Oecol 16:525-541.

Niinemets Ü (2010) A review of light interception in plant stands from leaf to canopy in different plant
419
420 achieved by adjustment of individual leaf angles and nitrogen content. Ann Bot 103:795-805

Ryan M, Phillips N, Bond B (2006) The hydraulic limitation hypothesis revisited. Plant, Cell \& Environ 440 patterns of CO 2 flux in boreal, temperate, and tropical forests in East Asia. Agric For Meteorol 441 148:700-713

442 443

Saigusa N, Yamamoto S, Hirata R, Ohtani Y, Ide R, Asanuma J, Gamo M, Hirano T, Kondo H, Kosugi Y, Li S-G, Nakai Y, Takagi K, Tani M, Wang H (2008) Temporal and spatial variations in the seasonal

Sellers PJ, Berry JA, Collatz GJ, Field CB, Hall FG (1992) Canopy reflectance, photosynthesis, and transpiration. III. A reanalysis using improved leaf models and a new canopy integration scheme.

Remote Sens Environ 42:187-216

Slatyer RO (1967) Plant-water relationships. Academic Press, London.

Tateishi M, Kumagai T, Suyama Y, Hiura T (2010) Differences in transpiration characteristics of Japanese beech trees, Fagus crenata, in Japan. Tree Physiol 30:748-760

Tazaki T, Ishihara K, Ushijima T (1980) Influence of water stress on the photosynthesis and productivity of plants in humid areas. In: Turner NC, Krammer PJ (eds) Adaptation of plants to water and high temperature stress. Wiley, New York, pp 309-321

Tenhunen JD, Pearcy RW, Lange OL (1987) Diurnal variations in leaf conductance and gas exchange in natural environments. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal function. Stanford University Press, California, pp 323-351

Terashima I, Araya T, Miyazawa S-I, Sone K, Yano S (2005) Construction and maintenance of the optimal photosynthetic systems of the leaf, herbaceous plant and tree: an eco-developmental treatise.

Ann Bot 95:507-519

Turner NC, Schulze E-D, Gollan T. (1984) The responses of stomata and leaf gas exchange to vapour
pressure deficits and soil water content. I. Species comparison at high soil water contents. Oecologia 63:338-342.

Uemura A, Ishida A, Nakano T, Terashima I, Tanabe H, Matsumoto Y (2000) Acclimation of leaf characteristics of Fagus species to previous-year and current-year solar irradiances. Tree Physiol 20:945-951

Uemura A, Ishida A, Matsumoto Y (2005) Simulated seasonal changes of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ exchange at the top canopies of two Fagus trees in a winter-deciduous forest, Japan. For Ecol Manag 212:230-242

Valladares F, Pearcy RW (2002) Drought can be more critical in the shade than in the sun: a field study of carbon gain and photo-inhibition in a Californian shrub during a dry El Niño year. Plant Cell Environ 25:749-759

Valladares F, Zaragoza-Castells J, Sánchez-Gómez D, Matesanz S, Alonso B, Portsmuth A, Delgado A, Atkin OK (2008) Is shade beneficial for Mediterranean shrubs experiencing periods of extreme drought and late-winter frosts? Ann Bot 102:923-933

Vogel S (2009) Leaves in the lowest and highest winds: temperature, force and shape. New Phytol 183:

13-26

Werner C, Ryel RJ, Correia O, Beyschlag W (2001) Effects of photoinhibition on whole-plant carbon gain assessed with a photosynthesis model. Plant, Cell, Environ 24:27-40

Yamasaki M, Kikuzawa K (2003) Temporal and spatial variations in leaf herbivory within a canopy of Fagus crenata. Oecologia 137:226-232

[^0]480 Yoshimura K (2010) Irradiance heterogeneity within crown affects photosynthetic capacity and nitrogen 481 distribution of leaves in Cedrela sinensis. Plant Cell Environ 33:750-758

482 Zotz G, Winter K (1996) Diel patterns of CO2 exchange in rainforest canopy plants. In: Mulkey SS, 483 Chazdon RL, Smith AP (eds.) Tropical Forest Plant Ecophysiology. Chapman \& Hall, New York, pp 484 89-113
a (Closed circles) in situ gross photosynthetic rate of the leaves ($P_{\mathrm{g}_{\mathrm{g}} \mathrm{mes}}$). (Open circles)
502 PPFD on the branch. b Leaf conductance to $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. c (Open boxes) leaf temperature. (Open circles) vapor pressure deficit based on the leaf temperature (VPD).
Table 1 The photosynthetic light response curve parameters and dark respiration rate (R_{d}) at the time of the curve measurement.

	Upper	Lower	Units
$P_{\text {max }}$		13.7^{a}	
ϕ	0.055	3.8^{b}	$\mu \mathrm{mol} \mathrm{m}^{-2} \mathrm{~s}^{-1}$
θ	0.21	0.049	$\mathrm{~mol} \mathrm{~mol}^{-1}$
R_{d}	1.8^{c}	0.55	

Different uppercase letters: (a, b) $p<0.01$ and (c, d) $p<0.05$ (t - test).

Figure Legends (Figs. 1-4)

Fig. 1 Diurnal courses of the parameters. The left, the middle and the right column shows the 1st, the 3rd and the 5th day after the last rain in 28 July 2008, respectively. For each parameter but PPFD (one sensor), the mean value of the four leaves on each position are respectively shown. The error bars indicate the unbiased estimate of the standard deviation.

512 (1st day) $P_{\mathrm{g} _ \text {mes }} / P_{\mathrm{g} _c v}=1.3-2.2 \times 10^{-2}$ Time of day (h).
513
514

Fig. $4 P_{\mathrm{g} _ \text {mes }} / P_{\mathrm{g} _c v}$ in relation to g. Each open circle and its error bar indicate mean 521 value and standard deviation, respectively, for the four leaves in each position. 522 Pearson's correlation coefficients (r) were shown ($* p<0.05$, *** $p<0.001$).

Fig. 2 Diurnal course of $P_{\mathrm{g}_{\mathrm{g}} \text { mes }} / P_{\mathrm{g}_{\mathrm{C}} \text { cv }}$, the ratio between in-situ photosynthetic rate on each time and photosynthetic rate estimated by photosynthetic light response curve, which was measured at one particular time during measurement days for each leaf. Each open circle and its error bars indicate mean value and its unbiased standard deviation, respectively, for the four leaves on each canopy position. Solid lines indicate significant linear regressions (${ }^{*} p<0.05,{ }^{* *} p<0.01$):
 (3rd day) $P_{\text {g_mes }} / P_{\mathrm{g} _c v}=1.4-2.9 \times 10^{-2} \mathrm{~h}$. (5th day) $P_{\mathrm{g} _ \text {mes }} / P_{\mathrm{g} _c v}=1.4-4.1 \times 10^{-2} \mathrm{~h}$.

Fig. 3 The slopes of the diurnal decline of $P_{\mathrm{g}_{\mathrm{Z}} \text { mes }} / P_{\mathrm{g}_{\mathrm{C}} \mathrm{cv}}$ (i.e. the slopes of the linear regressions for the upper leaves shown in Fig. 2) in relation to number of days after the last rain.

524 Fig. 1

526

Fig. 2

529
530
Fig. 3

[^0]: Yamazaki J, Yoda E, Takahashi A, Sonoike K, Maruta E (2007) Pacific Ocean and Japan Sea ecotypes of

