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Iron is essential for virtually all organisms but is toxic when present in excess. To acquire the proper 16 

amount of iron, plants induce expression of various genes involved in iron uptake and translocation in 17 

response to low iron availability. Two iron-binding ubiquitin ligases, OsHRZ1 and OsHRZ2, 18 

negatively regulate such iron deficiency responses in rice (Oryza sativa). Transgenic rice plants with 19 

repressed expression of OsHRZ1 and OsHRZ2 (HRZ knockdown lines) are tolerant to low iron 20 

availability and accumulate iron in shoots and seeds under both iron-sufficient and -deficient 21 

conditions without a growth penalty. Although the expression of OsHRZ1 and OsHRZ2 is 22 

transcriptionally upregulated under iron-deficient conditions, the physiological relevance of this 23 

induction is not known. In the present study, we analyzed the response of HRZ knockdown lines to 24 

excess iron. In the presence of severe excess iron, the HRZ knockdown lines grew worse than 25 
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non-transformants. The HRZ knockdown lines showed stunted shoot and root growth and more severe 26 

leaf bronzing compared to non-transformants. Moreover, these lines accumulated more iron in shoots 27 

and exhibited severely elevated expression of various genes involved in iron uptake and translocation 28 

as well as jasmonate signaling compared to non-transformants. These results indicate that HRZ 29 

ubiquitin ligases are crucial for repressing iron deficiency responses and protecting cells from iron 30 

toxicity in the presence of excess iron. These results support the possibility that HRZs are intracellular 31 

Fe sensors and provide clues for developing plants tolerant of either iron deficiency or excess with 32 

higher iron contents in edible parts. 33 

 34 

Abbreviations − bHLH, basic helix-loop-helix; BTS, BRUTUS; FBXL5, F-box leucine rich repeat 35 

protein 5; HRZ, hemerythrin motif-containing really interesting new gene- and zinc-finger proteins; 36 

IDEF, iron deficiency-responsive element-binding factor; IRO, iron-related transcription factor; JAs, 37 

jasmonates; MAs, mugineic acid family phytosiderophores; NT, non-transformant; RT-PCR, real 38 

time-polymerase chain reaction. 39 

 40 

Introduction 41 

Iron (Fe) is an essential element for virtually all organisms. Fe is utilized as an essential cofactor in 42 

numerous proteins in the form of the Fe-sulfur cluster, heme, or free Fe, where it mediates various 43 

metabolic processes, including photosynthesis, respiration, and chlorophyll biosynthesis (Marschner 44 

1995). Although abundant in soils, Fe is sparingly soluble especially under high pH and aerobic 45 

conditions. Therefore, plants grown under low Fe availability, such as in calcareous soils, often fail to 46 

obtain sufficient Fe and suffer from Fe deficiency, which results in leaf yellowing called Fe chlorosis. 47 

This symptom typically appears on the newest leaves. Fe deficiency consequently reduces plant 48 

growth as well as crop yield and quality (Marschner 1995). Fe uptake from the soil into the plant not 49 

only is essential for plant growth and reproduction but also is an essential source of Fe in humans and 50 

animals. Indeed, Fe and Zn deficiencies are among the most prevalent human micronutrient disorders. 51 
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The former affects an estimated one third of the world’s population, causing about 800 000 deaths 52 

annually worldwide (WHO 2002, Mayer et al. 2008). Thus, the development of crops tolerant of low 53 

Fe availability with high Fe and Zn contents in edible parts has long been pursued for human nutrition. 54 

Even though Fe is essential, excess Fe is deleterious because Fe2+ catalyzes the generation of 55 

reactive oxygen species in the Fenton reaction, promoting oxidative stress (Marschner 1995, Briat et al. 56 

1995). Fe toxicity is a major nutrient disorder in plants grown under anaerobic conditions and in acidic 57 

soils, in which the solubility of Fe is increased because of both an increase in Fe3+ solubility and a 58 

reduction of Fe(III) to the more soluble Fe2+ (Becker and Asch 2005, Stein et al. 2009a). Fe toxicity 59 

inhibits root elongation and provokes the appearance of brown spots in leaves, resulting in 60 

reddish-colored or dried leaves, the most recognized symptom of Fe toxicity, called leaf bronzing 61 

(Becker and Asch 2005). In contrast to Fe deficiency-mediated chlorosis, leaf bronzing typically starts 62 

in older leaves.  63 

Because of this toxicity, Fe uptake mechanisms are induced only under Fe-deficient conditions and 64 

are repressed when Fe is sufficient. Fe uptake mechanisms in higher plants have been studied 65 

extensively and are categorized as Strategy I and Strategy II (Römheld and Marschner 1986). Strategy 66 

I, utilized by dicot and non-graminaceous monocot species, depends on ferric reduction and 67 

subsequent uptake of Fe2+ (Römheld and Marschner 1986). Strategy II is utilized by graminaceous 68 

species and relies on biosynthesis and secretion of mugineic acid family phytosiderophores (MAs), 69 

which are efficient Fe(III) chelators that solubilize rhizospheric Fe that is absorbed in the form of 70 

Fe(III)-MAs (Takagi 1976, Takagi et al. 1984). Rice is a graminaceous plant that utilizes Strategy II, 71 

but it also takes up Fe2+ as a partial Strategy I (Ishimaru et al. 2006).  72 

Genes involved in both strategies, such as those encoding biosynthetic enzymes for MAs and 73 

transporter genes for MA efflux as well as Fe(III)-MAs and Fe2+ uptake, are strongly induced under 74 

Fe-deficient conditions and repressed under Fe-sufficient conditions at the transcript level (Kobayashi 75 

and Nishizawa 2012, Kobayashi et al. 2014). In rice, regulation is mediated by a transcriptional 76 
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network of positive and negative regulators, including Iron Deficiency-responsive Element-binding 77 

Factor 1 (IDEF1), IDEF2, Oryza sativa Iron-related transcription factor 2 (OsIRO2), and OsIRO3 78 

(Kobayashi et al. 2007, 2009, 2014, Ogo et al. 2006, 2007, 2008, 2011, Zheng et al. 2010). The 79 

expression of OsIRO2 and OsIRO3 is transcriptionally induced under Fe-deficient conditions similar 80 

to Fe uptake–related genes (Ogo et al. 2007, Zheng et al. 2010). IDEF1 and IDEF2 transcript levels 81 

remain unchanged according to Fe availability (Kobayashi et al. 2007, 2009, Ogo et al. 2008). The 82 

IDEF1 protein is subjected to 26S proteasome-mediated degradation, and its degradation is regulated 83 

by IDEF1-binding protein 1 (IBP1) belonging to the Bowman–Birk trypsin inhibitor family, and COP9 84 

signalosome subunit 6 (CSN6) (Zhang et al. 2014, Tan et al. 2016).  85 

Despite these findings, the identity of the signaling substances for Fe and the sensors that receive 86 

the signals and regulate the responses have not been identified in plants. IDEF1 binds directly to Fe2+ 87 

and other divalent metals, which suggests a role as an intracellular Fe sensor (Kobayashi et al. 2012). 88 

Furthermore, we previously identified another kind of potential Fe sensors in rice cells, designated 89 

Oryza sativa Hemerythrin motif-containing Really Interesting New Gene- and Zinc-finger protein 1 90 

(OsHRZ1) and OsHRZ2, by searching for Fe-binding expressional regulators in rice (Ogo et al. 2006, 91 

Kobayashi et al. 2013). OsHRZ1 and OsHRZ2 are close homologs, and their transcripts are induced in 92 

roots and leaves under Fe-deficient conditions (Kobayashi et al. 2013). In vitro analyses have revealed 93 

that both OsHRZ1 and OsHRZ2, as well as their orthologue in Arabidopsis thaliana, BRUTUS (BTS), 94 

bind to Fe and Zn and possess ubiquitination activity (Kobayashi et al. 2013, Selote et al. 2015). 95 

Transgenic rice lines with slightly decreased expression of OsHRZ1 and moderately decreased 96 

expression of OsHRZ2, designated HRZ knockdown lines, show substantial tolerance of low Fe 97 

availability in hydroponic culture and in calcareous soil (Kobayashi et al. 2013). Moreover, these lines 98 

accumulate about 2-4 times more Fe and about 1.3-1.5 times more Zn in seeds compared to 99 

non-transformants (NTs) under both sufficient and low Fe availability in soil, without any growth 100 

penalty (Kobayashi et al. 2013). These phenotypes are extremely promising for future applications of 101 

Fe- and Zn-fortified crops, which can be grown in calcareous soils. Gene expression analyses revealed 102 
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that the expression of most known Fe deficiency-inducible genes involved in Fe uptake and/or 103 

translocation is markedly enhanced in HRZ knockdown plants under Fe-sufficient conditions 104 

(Kobayashi et al. 2013). These results indicate that OsHRZ1 and OsHRZ2 are negative regulators of 105 

Fe deficiency-inducible genes for Fe uptake and translocation (Kobayashi et al. 2013). In addition, the 106 

expression of a subset of genes involved in the biosynthesis and signaling of jasmonates (JAs) is also 107 

enhanced in HRZ knockdown roots, in which JA concentrations increase under Fe-sufficient 108 

conditions (Kobayashi et al. 2016). We also found that JA signaling negatively regulates the Fe 109 

deficiency response under Fe-sufficient conditions, but this negative regulation is partially cancelled at 110 

very early stages of Fe deficiency when JA biosynthesis is transiently activated in rice roots 111 

(Kobayashi et al. 2016). These results suggest that OsHRZ1 and OsHRZ2 regulate multiple Fe 112 

deficiency response pathways and that their function is dependent on Fe availability. 113 

The possible function of HRZs as Fe sensors has also been deduced from their domain structures 114 

(Kobayashi et al. 2013, Kobayashi and Nishizawa 2014). HRZs contain hemerythrin domains on the 115 

N-terminal side and three kinds of Zn-finger domains (CHY-, CTCHY-, and RING-Zn-fingers) as well 116 

as a rubredoxin-type fold (also called Zn-ribbon) on the C-terminal side. These domain structures are 117 

conserved among plants and algae, including BTS in Arabidopsis (Long et al. 2010, Urzica et al. 2012, 118 

Kobayashi et al. 2013). Of these domains, the hemerythrin domain binds to Fe in animals and bacteria 119 

(Stenkamp 1994, Salahudeen et al. 2009, Vashisht et al. 2009). We revealed previously that OsHRZ1, 120 

OsHRZ2, and BTS bind not only Fe but also Zn, and the major binding sites are situated on the 121 

N-terminal side, which contains the hemerythrin domains (Kobayashi et al. 2013). In addition, smaller 122 

portions of Fe and Zn are also bound to the C-terminal side containing three Zn-fingers and a 123 

rubredoxin-type fold (Kobayashi et al. 2013). The RING-Zn-finger domain mediates the enzymatic 124 

reactions of E3 ligase, which ubiquitinates specific proteins for 26S proteasome-mediated degradation 125 

or other functional modifications (Hua and Vierstra 2011). The mammalian Fe sensor protein F-box 126 

leucine rich repeat protein 5 (FBXL5) also contains a hemerythrin domain that binds to Fe and an 127 

F-box domain, which is another constituent of E3 ubiquitin ligases (Salahudeen et al. 2009, Vashisht et 128 
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al. 2009). The FBXL5 protein is stabilized under Fe surplus conditions by Fe binding to the 129 

hemerythrin domain and ubiquitinates Iron Regulatory Protein 2 (IRP2) for degradation, which 130 

consequently de-represses the Fe deficiency response (Salahudeen et al. 2009, Vashisht et al. 2009). 131 

Moreover, receptors for various plant hormones are also composed of ligand-binding domains and 132 

constituents of E3 ubiquitin ligases (Hua and Vierstra 2011), which further supports the possibility of 133 

HRZs/BTS as Fe sensors that utilize Fe itself and/or Zn as the ligand(s) to sense Fe nutritional status.  134 

Two basic helix-loop-helix (bHLH) transcription factors, AtbHLH105/IAA-LEUCINE 135 

RESISTANT 3 (ILR3), and AtbHLH115, are suggested as ubiquitination targets of Arabidopsis BTS 136 

(Selote et al. 2015). AtbHLH105 and AtbHLH115, together with AtbHLH034 and AtbHLH104, 137 

belong to the subgroup IVc bHLH transcription factors that positively regulate Fe-deficiency 138 

responses in Arabidopsis (Selote et al. 2015, Zhang et al. 2015, Li et al. 2016, Liang et al. 2017). 139 

Similarly, a subgroup IVc bHLH transcription factor in rice, OsbHLH060/Oryza sativa Positive 140 

Regulator of Iron homeostasis 1 (OsPRI1), was recently suggested to be a ubiquitination target of 141 

OsHRZ1 (Zhang et al. 2017). OsbHLH060 positively regulates Fe deficiency responses possibly via 142 

the Fe deficiency–inducible bHLH transcription factors OsIRO2 and OsIRO3 (Zhang et al. 2017). 143 

However, this regulation does not fully explain the wide-ranging effects of HRZ knockdown plants, 144 

which suggests the existence of other ubiquitination targets of HRZs. In addition, whether OsHRZ2 is 145 

involved in this regulatory pathway through OsbHLH060 is not known. 146 

Although the aforementioned observations support the possibility of HRZs/BTS as Fe sensors, 147 

direct evidence remains limited. Selote et al. (2015) reported that BTS protein produced in vitro using 148 

a wheat germ extract system was less abundant when Fe was included in the reaction mixture. 149 

Mutations in the hemerythrin domain abolish this effect, which suggests that Fe binding to a 150 

hemerythrin domain might destabilize BTS. In addition to such protein-level regulation, the BTS 151 

transcript level also increases under Fe deficiency (Long et al. 2010), similarly to rice HRZs. Because 152 

of this regulation, BTS is thought to function mainly under Fe-limited conditions (Long et al. 2010, 153 

Selote et al. 2015). However, a complementation analysis using an Arabidopsis bts mutant indicated 154 
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that deleting the hemerythrin domains did not dramatically affect the physiological function of BTS, in 155 

contrast to the essential function of the RING Zn-finger domain (Selote et al. 2015, Matthiadis and 156 

Long 2016), which suggests the limited importance of the hemerythrin domains in BTS function. 157 

Moreover, another study identified a bts mutant that disrupted expression of Fe-related genes more 158 

predominantly under Fe-sufficient than under Fe-deficient conditions (Hindt et al. 2017), similarly to 159 

our HRZ knockdown rice (Kobayashi et al. 2013). These results suggest that HRZs/BTS function 160 

better under Fe-sufficient conditions than under Fe-deficient conditions, regardless of the Fe 161 

deficiency–induced expression of HRZs/BTS themselves.  162 

The present study explored the possible role of HRZs under excess Fe to clarify the Fe dependence 163 

of HRZ function and provide clues for demonstrating HRZs as cellular Fe sensors. To this end, we 164 

analyzed the responses of HRZ knockdown lines to various intensities of excess Fe. The results 165 

indicated that the HRZ knockdown lines were hypersensitive to severe excess Fe conditions. These 166 

knockdown lines showed enhanced Fe accumulation in leaves and de-repressed expression of Fe 167 

uptake and translocation-related genes to a pronounced degree under excess Fe. These results indicate 168 

that HRZs are responsible for tolerance of excess Fe and suggest that HRZ alters their function in 169 

response to Fe levels. 170 

 171 

Materials and methods 172 

Plant materials and growth conditions 173 

For severe excess Fe treatments, NT rice (Oryza sativa L. cultivar Tsukinohikari) was germinated on 174 

Murashige and Skoog medium (Murashige and Skoog 1962), whereas HRZ-knockdown lines 2i-1, 2i-2, 175 

and 2i-3 (Kobayashi et al. 2013) were germinated on Murashige and Skoog medium with hygromycin 176 

B (50 mg l-1). After a 13-day culture followed by a 3-day acclimation, the plantlets were transferred to 177 

a hydroponic solution in a greenhouse at 28°C under natural light conditions. The hydroponic solution 178 

was a modified Kasugai’s nutrient solution containing 0.35 mM (NH4)2SO4, 0.18 mM Na2HPO4, 0.27 179 

mM K2SO4, 0.36 mM CaCl2, 0.46 mM MgSO4, 18 µM H3BO3, 4.6 µM MnSO4, 1.5 µM ZnSO4, 1.5 µM 180 
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CuSO4, 1.0 µM Na2MoO4, and 35.7 µM FeCl2 at pH 5.5. After 7 days, the NT and the HRZ 181 

knockdown lines were exposed to excess ferrous Fe treatments of 1 071 (×30), 1 785 (×50), or 2 499 182 

(×70) µM FeCl2 and the control solution of 35.7 (×1) µM FeCl2 for 14 days. The solution pH was 183 

adjusted to pH 4.0 at preparation and every 2 days thereafter. The solution was renewed every 7 days. 184 

The newest and third newest leaves and the root system were harvested after 14 days. 185 

For a milder excess Fe treatment, NT, 2i-1 and 2i-2 lines were germinated as above. After 18-day 186 

culture followed by a 3-day acclimation, the plantlets were transferred to another modified Kasugai’s 187 

nutrient solution containing 0.70 mM K2SO4, 0.10 mM KCl, 0.10 mM KH2PO4, 2.0 mM Ca(NO3)2, 188 

0.50 mM MgSO4, 10 µM H3BO3, 0.50 µM MnSO4, 0.50 µM ZnSO4, 0.20 µM CuSO4, 0.01 µM 189 

(NH4)6Mo7O24, and 100 µM Fe(III)-EDTA at pH 5.5 in a greenhouse at 28°C under natural light 190 

conditions. After 6 days, the plants were transferred to either excess Fe condition containing 500 µM 191 

Fe(III)-EDTA supplemented with 15.8 mg l-1 Tetsuriki-TypeX fertilizer (containing approx. 19 µM 192 

Fe2+; Aichi Steel, Aichi, Japan; Matsuyama et al. 2008) [×5 Fe(III)+Type X], or the control condition 193 

containing 100 µM Fe(III)-EDTA [×1 Fe(III)] at pH 5.5. The solution was renewed after 4 days. Roots 194 

were harvested after 7 days. 195 

 196 

Measurement of bronzing scores and dry weights 197 

After the 14-day exposure to excess Fe, the severity of Fe toxicity was measured in leaves using the 198 

bronzing score of the fully expanded newest leaf as well as the second, third, and fourth newest leaves. 199 

The scoring system for Fe toxicity by Asch et al. (2005) adapted from IRRI–INGER (1996) was used 200 

as follows: (percent leaf area affected = score): 0% = 0 (no symptoms), 1–9% = 1, 10–29% = 3, 30–201 

49% = 5, 50–69% = 7, 70–89% = 9, 90–100% = 10 (dead leaf). Shoot and root dry weights were 202 

measured after a 5-day incubation at 60°C.  203 

 204 

Metal concentration measurements 205 

Samples of the newest and third newest leaves and roots from control and Fe-treated plants were 206 
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collected for metal concentration measurements according to Masuda et al. (2009) with a slight 207 

modification as follows: the roots of control plants were washed in distilled water whereas the roots of 208 

the plants exposed to excess Fe were washed in 50 mM Na-EDTA and Milli-Q water (Millipore, 209 

Bedford, MA). We measured Fe, Zn, copper (Cu), and manganese (Mn) concentrations in digested 210 

samples.  211 

 212 

Gene expression analysis 213 

Roots after the treatments were used for RNA extraction and quantitative real time-polymerase chain 214 

reaction (RT-PCR) analysis according to Kobayashi et al. (2016). Transcript abundance was 215 

normalized against the rice α-2 tubulin transcript level and was expressed as a ratio relative to the 216 

levels in ×1 NT roots. Primers used for quantitative RT-PCR were as follows: OsNAS1 forward, 217 

5′-GTCTAACAGCCGGACGATCGAAAGG-3′; OsNAS1 reverse, 218 

5′-TTTCTCACTGTCATACACAGATGGC-3′; OsNAS2 forward, 219 

5′-TGAGTGCGTGCATAGTAATCCTGGC-3′; OsNAS2 reverse, 220 

5′-CAGACGGTCACAAACACCTCTTGC-3′; TOM1 forward, 221 

5′-CACCAGTTGCAGATCGTATAGGGAGGAA-3′; TOM1 reverse, 222 

5′-TCGGAAAATACATTTGGATATTGCT-3′; OsYSL15 forward, 223 

5′-CACCCTGGTGAAGCAGCTGGTGCTC-3′; OsYSL15 reverse, 224 

5′-CGGCCATCGCCGTCGGCAGCGGCAC-3′; OsIRO2 forward, 225 

5′-CCGGCGGATCCCGCTCCCAC-3′; OsIRO2 reverse, 5′-CGTCGTCGTCAGCTCCTTCT-3′; 226 

OsIRT1 forward, 5′-CGTCTTCTTCTTCTCCACCACGAC-3′; OsIRT1 reverse, 227 

5′-GCAGCTGATGATCGAGTCTGACC-3′; OsYSL2 forward, 228 

5′-TCTGCTGGCTTCTTTGCATTTTCTG-3′; OsYSL2 reverse, 229 

5′-ACCATGTCGAACTCAGCATCCAGGA-3′; OsLOX2;1 forward, 230 

5′-AACGCTCCAAAACTACTTGC-3′; OsLOX2;1 reverse, 231 

5′-ACATTAAACATTGTGATACCTTGAG-3′; OsLOX2;3 forward, 232 
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5′-TGGGAGGACATCTACTTGC-3′; OsLOX2;3 reverse, 5′-AACATCAACAACAACCACTTC-3′; 233 

OsJAZ1 forward, 5′-TTTGATTTCCACGTGTCTGTG-3′; OsJAZ1 reverse, 234 

5′-CCGTGTGCATGGATCCTTAC-3′; OsFer1+2 forward, 235 

5′-GTGAAGGGCAGTAGTAGGTTTCG-3′; OsFer1+2 reverse, 236 

5′-CGCGCGACATACACATGATTCTG-3′; α-2 tubulin, TaqMan Gene Expression Assays 237 

Os03562997_mH. OsFer1+2 primers specifically amplify both OsFer1 and OsFer2 genes. 238 

 239 

Statistical analysis 240 

Statistical analysis was carried out using Microsoft Excel software. Comparisons were made between 241 

NT and each transgenic line for each condition, time point and plant part. For each set of comparisons, 242 

a two-sample Student’s t-test for equal or unequal variance was carried out based on an F-test for 243 

equal variance (significance level = 0.05). 244 

 245 

Results 246 

The HRZ knockdown lines are hypersensitive to severe excess Fe  247 

We cultured the HRZ knockdown lines (2i-1, 2i-2, and 2i-3; Kobayashi et al. 2013) and NT in a 248 

hydroponic solution at pH 4.0 supplied with 35.7 (×1) µM FeCl2 as a control and 1 071 (×30), 1 785 249 

(×50), or 2 499 (×70) µM FeCl2 as the excess ferrous Fe treatments for 14 days. Plants had similar 250 

appearances at the onset of the treatment (Fig. S1). After 4 days, lines 2i-1 and 2i-3, particularly the 251 

latter, were stunted in growth and had a blasted leaf color compared to NT under the ×30, ×50, and 252 

×70 Fe conditions (Fig. S1). This tendency became more pronounced after 7 days (Fig. S1) and even 253 

more pronounced after 14 days (Fig. 1A), when line 2i-2 also showed inferior growth compared to NT 254 

under the ×70 Fe condition. NT plants appeared rather healthy during the 14 days, except for a mild 255 

decrease in leaf growth under the ×50 and ×70 Fe conditions (Fig. 1A).  256 

We also noticed leaf bronzing, a typical Fe toxicity symptom, in older leaves of all HRZ 257 

knockdown lines grown under the ×30, ×50, and ×70 excess Fe conditions on day 4 of treatment but 258 
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not in NT leaves or under the ×1 Fe condition (Fig. S1). This leaf bronzing was more pronounced at 259 

the end of the 14-day excess Fe treatment (Fig. 1B). Line 2i-3 exhibited the severest bronzing under 260 

the ×30 Fe condition, although all three HRZ knockdown lines showed severe bronzing under the ×50 261 

and ×70 Fe conditions.  262 

Quantification of leaf bronzing with the bronzing score confirmed these results (Fig. 2). The 263 

bronzing score was always higher in older leaves than in new leaves. NT leaves had bronzing scores of 264 

near 0, which indicates scarce bronzing, except for a bronzing score of about 1 in older leaves under 265 

the ×70 Fe condition. The HRZ knockdown lines had higher bronzing scores than NT in every leaf 266 

analyzed under the ×30, ×50, and ×70 excess Fe conditions. Line 2i-3 had the highest bronzing scores 267 

under any of these excess Fe conditions.  268 

Measurement of plant growth during the Fe treatments also supported the susceptibility of the 269 

HRZ knockdown lines to excess Fe (Fig. 3). Shoots of lines 2i-1 and 2i-3 were shorter compared to 270 

those of NT on day 4 of the ×30, ×50, and ×70 excess Fe treatments, and this difference continued 271 

thereafter. In addition, line 2i-2 also tended to have shorter shoots than NT on day 7 and thereafter 272 

under the ×70 excess Fe condition (Fig. 3A). NT had shorter shoots under the ×50 and ×70 Fe 273 

conditions, but not under ×30 Fe, compared to the ×1 Fe condition on day 7 and thereafter. By contrast, 274 

root growth was inhibited under the ×30, ×50, and ×70 excess Fe conditions compared to the ×1 Fe 275 

condition in all genotypes on day 7 and thereafter (Fig. 3B). The HRZ knockdown lines, particularly 276 

line 2i-3, had shorter roots than NT under the ×50 and ×70 excess Fe conditions on day 4 and 277 

thereafter (Fig. 3B).  278 

We also measured the dry weights of shoots and roots (Fig. 4). NT plants did not show any 279 

difference in shoot dry weights but showed higher root dry weights in response to the ×30, ×50, and 280 

×70 excess Fe conditions. The HRZ knockdown lines showed lower shoot and root dry weights 281 

compared to NT under the ×30, ×50, and ×70 excess Fe conditions. The decrease in dry weight was 282 

greatest in line 2i-3 and smallest in line 2i-2.  283 
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Taken together, these results indicate that the HRZ knockdown lines, particularly line 2i-3, were 284 

hypersensitive to severe excess Fe conditions of which NT rice was tolerant. Line 2i-2 showed the 285 

least sensitivity of the three lines but was more sensitive to excess Fe compared to NT. 286 

 287 

The HRZ knockdown lines hyperaccumulate Fe in leaves under excess Fe 288 

We measured metal concentrations in the newest and third newest leaves as well as in whole roots 289 

after the 14-day ×1 and ×30 Fe treatments (Fig. 5, Fig. S2). The Fe concentration in leaves, 290 

particularly in older (third newest) leaves, was much higher in all genotypes under the ×30 Fe 291 

condition compared to the ×1 Fe condition (Fig. 5A). Notably, the HRZ knockdown lines accumulated 292 

still higher concentrations of Fe compared to NT under the ×30 Fe condition but not under the ×1 Fe 293 

condition (Fig. 5A). The highest Fe concentration was observed in older leaves of line 2i-3 under the 294 

×30 Fe condition. This line accumulated about 6 times more Fe in the third newest leaves compared to 295 

the newest leaves, whereas NT accumulated about 3 times more Fe in the third newest leaves 296 

compared to the newest leaves.  297 

Root Fe concentrations showed a similar trend (Fig. 5B). However, the accumulation of Fe in the 298 

HRZ knockdown lines compared to NT was relatively slight and significant only in line 2i-3 roots 299 

under the ×30 Fe condition (Fig. 5B).  300 

Concentrations of Zn, Cu, and Mn in leaves tended to decrease under the ×30 Fe condition 301 

compared to the ×1 Fe condition in all genotypes, particularly in older leaves (Fig. S2). The 302 

concentrations of these metals did not differ significantly between the HRZ knockdown lines and NT, 303 

except for the higher concentrations of Zn, Cu, and Mn in older leaves of line 2i-3; moderately lower 304 

concentrations of Zn in older leaves of lines 2i-1 and 2i-2; and moderately lower concentrations of Cu 305 

in the newest leaves of all three HRZ knockdown lines (Fig. S2). These results indicate that the HRZ 306 

knockdown lines specifically hyperaccumulated Fe in leaves, particularly older leaves, under excess 307 

Fe conditions. 308 
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HRZ knockdown roots tended to have slightly higher concentrations of Zn than those in NT under 309 

both the ×1 and ×30 Fe conditions (Fig. S2). Root Cu and Mn concentrations were similar between the 310 

HRZ knockdown lines and NT under the ×1 and ×30 Fe conditions (Fig. S2). 311 

 312 

The HRZ knockdown lines hyper-express Fe deficiency–inducible genes even more under excess 313 

Fe conditions 314 

Next, we analyzed transcript levels of representative genes involved in Fe deficiency responses in the 315 

roots of the HRZ knockdown lines and NT (Fig. 6). We used HRZ knockdown lines 2i-1 and 2i-2 316 

because the roots of line 2i-3 were severely damaged under ×30 and higher Fe conditions, and we 317 

were unable to extract proper RNA. Under the ×1 Fe condition, Oryza sativa Nicotianamine Synthase 318 

1 (OsNAS1), OsNAS2, Transporter Of Mugineic acid 1 (TOM1), Oryza sativa Yellow Stripe-Like 15 319 

(OsYSL15), OsIRO2, Oryza sativa Iron-Regulated Transporter 1 (OsIRT1), and OsYSL2, typical Fe 320 

deficiency-inducible genes involved in Fe uptake and translocation (Kobayashi et al. 2014 and 321 

references therein), showed higher expression in the HRZ knockdown lines compared to NT except for 322 

decreased expression of OsYSL2 in line 2i-2 (Fig. 6A), consistent with previous results (Kobayashi et 323 

al. 2013). In addition, expression of these genes in NT was similar or still lower under the ×30 Fe 324 

condition compared to the ×1 Fe condition (Fig. 6A), consistent with induction of these genes under 325 

Fe-deficient conditions (Kobayashi et al. 2014). Nevertheless, expression of these genes was not 326 

repressed at all under the ×30 Fe condition in the HRZ knockdown lines but was much higher than 327 

under the ×1 Fe condition, particularly in line 2i-2, except for OsIRT1 in lines 2i-1 and 2i-2 and 328 

OsYSL2 in line 2i-2 (Fig. 6A). Similar expression patterns were also observed for Oryza sativa 329 

Lipoxygenase 2;1 (OsLOX2;1), OsLOX2;3 and Oryza sativa Jasmonate ZIM-domain 1 (OsJAZ1), 330 

representative genes involved in JA biosynthesis and signaling (Fig. 6B). These results indicate that 331 

HRZs are crucial for repressing Fe deficiency-involved genes to a greater extent under excess Fe 332 

conditions.  333 

We also analyzed the expression of Fe overload-inducible genes, Oryza sativa Ferritin 1 (OsFer1) 334 
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and OsFer2, which encode Fe storage proteins (Stein et al. 2009b). Summation of OsFer1 and OsFer2 335 

expression was increased under the ×30 Fe condition compared to the ×1 Fe condition in NT (Fig. 6C), 336 

consistent with previous report (Stein et al. 2009b). Expression of OsFer1 plus OsFer2 was lower in 337 

the HRZ knockdown lines under the ×1 Fe condition, but was higher under the ×30 Fe condition 338 

compared to NT (Fig. 6C), suggesting that the OsFer expression is regulated in a manner distinct from 339 

that of Fe deficiency-inducible genes, and is also misregulated in the HRZ knockdown plants. 340 

 341 

The HRZ knockdown lines grow healthily but hyper-express Fe deficiency-inducible genes under 342 

milder excess Fe 343 

We also tested a milder excess Fe condition which contained 500 µM Fe(III)-EDTA plus about 19 µM 344 

Fe2+ supplied by Tetsuriki-TypeX fertilizer (Matsuyama et al. 2008, Kobayashi et al. 2010) at pH 5.5 345 

[×5 Fe(III)+Type X] for 7 days, in comparison with a standard control condition containing 100 µM 346 

Fe(III)-EDTA [×1 Fe(III)] (Fig. S3). The HRZ knockdown lines did not show any Fe toxic symptoms 347 

or growth retardation under such condition. Expression analysis of typical Fe deficiency-inducible 348 

genes after 7-day treatment revealed that these genes are strongly repressed under the ×5 Fe(III)+Type 349 

X condition in NT. However, the HRZ knockdown lines still hyper-expressed these genes under this 350 

condition, showing a greater difference in the expression ratios with the NT than compared with the ×1 351 

Fe(III) condition (Fig. S3). These results indicate that HRZs are functional under a wide range of 352 

excess Fe conditions, even though visible Fe toxicity symptoms appear only under severe excess Fe. 353 

 354 

Discussion 355 

In the present report, we provide evidence that HRZ knockdown lines are hypersensitive to severe 356 

Fe-excess conditions, that is 1 071 µM (×30) or more Fe2+ at pH 4.0 (Figs 1–4, Fig. S1). These results 357 

indicate that HRZs are crucial for tolerance of excess Fe in rice. Of the three HRZ knockdown lines 358 

tested, line 2i-3 showed the highest degree of susceptibility. This line corresponded to the most 359 
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tolerant line under Fe-deficient conditions and also to the line with the strongest repression of OsHRZ1 360 

and OsHRZ2 expression (Kobayashi et al. 2013). This observation suggests a possible negative 361 

correlation between HRZ transcript levels and susceptibility to excess Fe as well as tolerance of Fe 362 

deficiency. However, the second most hypersensitive line under excess Fe was line 2i-1, which did not 363 

correspond to the second most tolerant line under Fe-deficient conditions, which was line 2i-2 364 

(Kobayashi et al. 2013). Unlike the other lines, line 2i-2 did not hyper-express OsYSL2, encoding an 365 

Fe(II)- and Mn-nicotianamine transporter responsible for internal Fe and Mn translocation (Koike et al. 366 

2004, Ishimaru et al. 2010), in either Fe-sufficient, -deficient, or -excess conditions either in the 367 

present study (Fig. 6A) or in our previous study (Kobayashi et al. 2013), for unknown reasons. This 368 

feature of OsYSL2 expression might have resulted in less susceptibility to severe excess Fe conditions.  369 

The metal concentration analysis revealed that all three HRZ knockdown lines accumulated much 370 

higher concentrations of Fe in shoots compared to NT under the ×30 Fe condition, but Fe 371 

accumulation was only moderately higher than that of NT in roots (Fig. 5). These results suggest that 372 

enhanced Fe translocation from roots to shoots might be the main reason for enhanced Fe toxicity in 373 

the HRZ knockdown lines. A previous study revealed enhanced Fe accumulation in HRZ knockdown 374 

lines in both leaves and seeds under both normal and low Fe availability in soil and hydroponic 375 

cultures (Kobayashi et al. 2013). In the present study, enhanced accumulation of Fe was observed 376 

under the ×30 but not the ×1 Fe condition. The ×1 Fe condition in our present experiment was quite 377 

different from the previous control condition: the latter contained Fe(III)-EDTA at pH 5.5 instead of 378 

Fe2+ at pH 4.0. The HRZ knockdown lines hyper-express the genes involved in Strategy II-based 379 

Fe(III) uptake more strongly than the Fe2+ uptake transporter gene OsIRT1 either in the present study 380 

(Fig. 6A) or in our previous study (Kobayashi et al. 2013), which might explain the differences in the 381 

Fe concentration trend in leaves under control Fe condition.  382 

We previously showed that the Zn concentration consistently increases in HRZ knockdown seeds 383 

compared to those of NT under both normal and low Fe availability in soil, whereas it increases less 384 

consistently in leaves (Kobayashi et al. 2013). In the present study, Zn concentrations in leaves and 385 
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roots were similar or slightly increased in the HRZ knockdown lines compared to NT (Fig. S2). 386 

Because an increase in Fe and Zn concentrations in the edible parts of plants in a wide range of growth 387 

conditions is an extremely important trait for future applications of Fe- and Zn-fortified crops, our 388 

results provide baseline data for further examinations of Fe and Zn accumulation traits under various 389 

growth conditions. In contrast to Fe concentrations in roots and leaves varying dependent on growth 390 

conditions, Fe concentration in rice seeds is strictly controlled and is similar under Fe-sufficient and 391 

-deficient conditions (Kobayashi et al. 2013), highlighting superiority of certain genotypes such as the 392 

HRZ knockdown lines which accumulate high Fe in seeds. Further analysis will be needed regarding 393 

Fe concentrations in the seeds of the HRZ knockdown lines grown under excess Fe conditions to 394 

understand the traits of these lines. 395 

In addition to mineral fortification, tolerance of low Fe availability is another important trait of the 396 

HRZ knockdown lines. We revealed that these lines, particularly the most tolerant line under low Fe 397 

conditions (i.e., line 2i-3), were hypersensitive to excess Fe. However, our growth conditions, 1 071 398 

µM (×30) or more Fe2+ at pH 4.0, represent a very severe Fe excess and the NT rice used in the present 399 

study (Tsukinohikari cultivar) is one cultivar that is highly tolerant of excess Fe (data not shown). 400 

Furtheremore, the low pH used in this study is also an important factor. In fact, the toxic effects of Fe 401 

occur under low pH conditions because Fe in soil solution rarely precipitates as various oxides, 402 

hydroxides, or carbonate at low pH (Nozoe et al. 2008). In comparison, the HRZ knockdown lines 403 

grew healthily without any symptoms under a milder excess Fe condition at pH 5.5 (Fig. S3). These 404 

observations suggest that future application of HRZ knockdown might not be limited by Fe toxicity 405 

problems except in severely acidic soils.  406 

We analyzed the transcript expression levels of typical Fe uptake/translocation-related genes 407 

induced by Fe deficiency (Fig. 6A). Notably, repression of these genes was severely disrupted in the 408 

HRZ knockdown lines and their expression levels were rather increased under ×30 Fe compared with 409 

under ×1 Fe (Fig. 6A), whereas strong repression of these genes was observed under higher Fe 410 

availability in NT roots. This expressional feature might account for the enhanced Fe translocation 411 
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from roots to shoots (Fig. 5) and ultimately more severe Fe toxicity. Tolerance of Fe toxicity can also 412 

be affected by other factors. For example, rhizospheric oxidization of Fe2+ by oxygen transport from 413 

shoots to roots through the aerenchyma causes precipitation of Fe on the root surface (Asch et al. 2005, 414 

Deng et al. 2010, Abiko et al. 2012). Some tolerant cultivars have larger diameter pith cavities in 415 

shoots and the primary root that increase the absolute volume of aerenchyma and the number of lateral 416 

roots, increasing root oxidation power and Fe exclusion ability (Wu et al. 2014). We analyzed the 417 

expression of genes involved in the formation of lysigenous aerenchyma in rice roots (Yamauchi et al. 418 

2017), but these genes were not repressed by HRZ knockdown of roots under normal conditions (GEO 419 

Series accession number GSE39906, Kobayashi et al. 2013), which suggests that the HRZ knockdown 420 

lines might not be defective in the formation of aerenchyma. We observed enhanced expression of 421 

ferritin genes in HRZ knockdown roots under the ×30 Fe condition (Fig. 6C), suggesting a Fe overload 422 

in root symplast because ferritin genes are induced in response to intracellular Fe overload (Briat et al. 423 

1995, Stein et al. 2009b). The HRZ knockdown lines showed more pronounced Fe hyperaccumulation 424 

and severe bronzing in older (third newest) leaves than in the newest leaves (Figs 2, 5A). This 425 

suggests that the older leaves are the main tissues of Fe susceptibility of the HRZ knockdown lines, 426 

where bronzing might be caused either by enhanced formation of an Fe oxide plaque or different 427 

mechanisms involving Fe entry into the cells and/or aberrant distribution. Further analysis on Fe 428 

localization in tissues or organelles will shed light on precise mechanisms of Fe susceptibility of the 429 

HRZ knockdown lines.  430 

Our results indicate that HRZs repress the expression of genes involved in Fe uptake/translocation 431 

more actively under excess Fe (Fig. 6A). Genes involved in JA biosynthesis and signaling are also 432 

regulated similarly (Fig. 6B), suggesting a conserved pathway of HRZ-mediated regulation among Fe 433 

uptake/translocation and JA-related genes. Less pronounced enhancement of HRZ-mediated 434 

repression was also observed under a milder excess Fe (Fig. S3). Considering these results, along with 435 

the previous observation that such HRZ function is more evident under Fe-sufficient conditions than 436 

under Fe-deficient conditions (Kobayashi et al. 2013), HRZs are thought to be activated by an 437 
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abundance of Fe. This notion is also compatible with the possible function of HRZs as intracellular Fe 438 

sensors that might alter or modify their own activity or stability by binding directly to either Fe, Zn, or 439 

both (Kobayashi and Nishizawa 2014, 2015). Further biochemical analyses including determination of 440 

affinities/dissociation constants of the HRZ-metal bindings will be important for clarifying the 441 

underlying molecular mechanisms.  442 

Given our evidence that HRZs are functional and physiologically crucial under excess Fe 443 

conditions, transcriptional induction of HRZ genes under Fe-deficient conditions appears somewhat 444 

counterintuitive. Whether the expression level of HRZ proteins is also dependent on Fe nutritional 445 

status is unknown, although HRZ proteins are susceptible to 26S proteasome-mediated degradation in 446 

vitro under both Fe-sufficient and -deficient conditions to similar degrees (Kobayashi et al. 2013). 447 

BTS is thought to be a functional orthologue of HRZ in Arabidopsis because of the high similarity in 448 

both the amino acid sequence and phenotypes of knockdown or loss-of-function mutants (Long et al. 449 

2010, Kobayashi et al. 2013, Selote et al. 2015, Hindt et al. 2017). In vitro results show less abundant 450 

production of the BTS protein in the presence of Fe, which suggests a preferred function under 451 

Fe-deficient conditions (Selote et al. 2015). Nevertheless, Hindt et al. (2017) reported a novel BTS 452 

mutant, bts-3, in which the expression of many Fe deficiency-inducible genes are de-repressed under 453 

Fe-sufficient but not Fe-deficient conditions. This mutant accumulates high levels of Fe in roots, 454 

leaves, and seeds and exhibits Fe toxicity symptoms when grown under Fe-sufficient conditions 455 

(Hindt et al. 2017). These results suggest that BTS is more functional under higher Fe concentrations, 456 

like HRZs, opposing a previous hypothesis by Selote et al. (2015) of a preferred function of BTS 457 

under Fe-deficient conditions. Hindt et al. (2017) proposed that BTS induction under Fe-deficient 458 

conditions might allow for quick turning off of the Fe deficiency response upon a sudden increase in 459 

Fe availability. This scenario might also be compatible with rice growing under semi-submerged 460 

conditions, in which seasonal variation in precipitation, flooding, and drainage can cause sudden 461 

fluctuations in soil Fe availability for plants. For example, Fe2+ concentration increases sharply in 462 

reduced soil/solution with a low pH, because the Fe2+ oxidation rate decreases (Elec et al. 2013). In 463 
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this scenario, induction of HRZs/BTS under Fe-deficient conditions could make sense even if their 464 

main function is to repress Fe deficiency responses to prevent excessive Fe uptake under excess Fe 465 

conditions. Further examinations will be needed to clarify the precise function of HRZs in Fe nutrition 466 

and to uncover the nature of Fe sensors and signals in plant cells. 467 

 468 

Conclusions 469 

We provide evidence that HRZ ubiquitin ligases are functional not only under Fe-deficient and 470 

Fe-sufficient conditions but even more so under excess Fe conditions, when they repress Fe deficiency 471 

responses. HRZs are crucial for tolerating severe excess Fe conditions. Our results support the possible 472 

function of HRZs as intracellular Fe sensors and provide information for future applications of HRZs 473 

to mineral-fortified crops with consistent growth under unfavorable Fe conditions. 474 
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treatments. 634 

Fig. S3. Growth feature and gene expression of non-transformant and HRZ knockdown rice during 635 

milder excess Fe treatments. 636 
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 638 
Fig. 1. Appearance of non-transformant (NT) and HRZ knockdown (lines 2i-1, 2, and 3; indicated as 1, 639 

2, and 3, respectively) rice plants after 14 days Fe treatments. (A) Whole shoot appearance. (B) 640 

Representative leaf appearance. Plants were grown hydroponically under control (×1) and excess Fe 641 

(×30, ×50, and ×70) conditions at pH 4.0. 642 
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 644 
 645 

Fig. 2. Bronzing scores of non-transformant (NT) and HRZ knockdown (lines 2i-1, 2, and 3) rice after 646 

14 days Fe treatments. Means ± SD (n = 6) are shown. The first, second, third, and fourth newest 647 

leaves are indicated on the horizontal axis by 1, 2, 3, and 4, respectively. Plants were grown 648 

hydroponically under control (×1) and excess Fe (×30, ×50, and ×70) conditions at pH 4.0. Asterisks 649 

indicate significant differences compared to the NT level for each condition and plant part (* P<0.05, 650 

** P<0.01). 651 
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 653 

Fig. 3. Growth of non-transformant (NT) and HRZ knockdown (lines 2i-1, 2, and 3) rice during Fe 654 

treatments. (A) Shoot length. (B) Root length. Mean values (n = 3) are shown. Plants were grown 655 

hydroponically under control (×1) and excess Fe (×30, ×50, and ×70) conditions at pH 4.0. Asterisks 656 

indicate significant differences compared to the NT level at each time point (* P<0.05, ** P<0.01). 657 
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 659 
Fig. 4. Dry weight of non-transformant (NT) and HRZ knockdown (lines 2i-1, 2, and 3) rice after 14 660 

days Fe treatments. (A) Shoot dry weight. (B) Root dry weight. Means ± SD (n = 2 for ×1 and ×30, n 661 

= 3 for ×50 and ×70) are shown. Plants were grown hydroponically under control (×1) and excess Fe 662 

(×30, ×50, and ×70) conditions at pH 4.0. Asterisks indicate significant differences compared to the 663 

NT level at each condition (* P<0.05, ** P<0.01). 664 
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 666 

Fig. 5. Fe concentrations of non-transformant (NT) and HRZ knockdown (lines 2i-1, 2, and 3) rice 667 

after 14 days Fe treatments. (A) Leaf Fe concentrations. Pale and dark bars indicate concentrations in 668 

the newest and third newest leaves, respectively. (B) Root Fe concentrations. Means ± SD (n = 3) are 669 

shown. Plants were grown hydroponically under control (×1) and excess Fe (×30) conditions at pH 4.0. 670 

Asterisks indicate significant differences compared to the NT level for each condition and plant part (* 671 

P<0.05, ** P<0.01). 672 
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 674 

 675 

Fig. 6. Transcript levels of representative genes involved in Fe deficiency responses in 676 

non-transformant (NT) and HRZ knockdown (lines 2i-1, 2, and 3) rice roots after 14 days Fe 677 

treatments. (A) Genes involved in Fe uptake and translocation. (B) Genes involved in the jasmonate 678 

biosynthesis and signaling. (C) Genes involved in Fe storage. Plants were grown hydroponically under 679 

control (×1) and excess Fe (×30) conditions at pH 4.0. Roots were harvested and used for quantitative 680 

real-time-polymerase chain reaction analysis. Transcript abundance was normalized against the rice 681 

α-2 tubulin transcript level and expressed as a ratio relative to the levels in NT under the ×1 Fe 682 

condition (means ± SD, n = 3). Asterisks indicate significant differences compared to the NT level at 683 

each condition (* P<0.05, ** P<0.01). OsFer1+2 indicates the summation of OsFer1 and OsFer2 684 

expression. 685 
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