共晶系材料における熱伝導の数値計算

石川県立大学 教養教育センター 稲葉 宏和

Abstract

To investigate crystallization in the eutectic materials, I calculated two-dimensional heat conduction equation. The two-dimensional heat conduction equation is numerically computed using the alternating direction implicit method (ADI method). The heat transfer in the eutectic materials is discussed.

Keywords: numerical calculation; ADI method; heat conduction equation; eutectic materials; phase change

1. はじめに

カルコゲン材料は加熱・冷却により非晶質から結晶 構造もしくは結晶構造から非晶質への相変化を行うこ とが知られている。非晶質と結晶での光学的もしくは 電気的特性の違いが相変化メモリーに利用されている。

相変化は、ストレージとして CD-RW、DVD-RW、DVD-RAM、 Blu-ray disc などに利用されている。また、メモリー として PCM (Phase Change Memory)、OUM (Ovonics Unified Memory) に利用されている。

相変化メモリーに利用される材料として、擬合金系の $Ge_2Sb_2Te_5$ 構造と共晶系の AgInSbTe、 $Ge(Sb_7Te_3)$ +Sb 構造などが知られている。

擬合金系材料の結晶化は、結晶核生成とその結晶核 からの結晶成長により行われる。非晶質径が小さくな っても結晶化時間は同じである。

それに対して、共晶系材料は結晶層と非晶質層との 界面から結晶化が始まり、中心まで成長したとき結晶 化が終わる。結晶化時間は非晶質径が小さくなると短 くなる。そのため、共晶系材料の方がメモリーの高速 化に有利であると考えられる(奥田, 2004)。

これまで、結晶化のメカニズムを検討するため共晶 系材料での熱伝導の計算を行ってきた。特に、実験で は検討困難な結晶化初期(~1µs)のメカニズムを2 次元熱伝導方程式の数値計算により解析した(Okuda et al., 2004, 2005)。そこでは注入エネルギーを円形 の分布とし対称性を導入した。それにより2次元の計 算を動径方向と角度方向に分離し、1次元に還元して 計算の簡略化を図った。

本研究では、2次元熱伝導方程式を交互方向陰解法 (ADI 法)により計算する。注入エネルギーは対称形 でない長方形とし、結晶化初期の加熱・冷却における 2次元の熱伝導を計算する。潜熱の影響については今 回の計算では省略する。

2. 熱伝導計算

潜熱を考慮しない共晶系材料における2次元の熱伝 導の基本方程式は、

$$\rho C_{p} \frac{\partial T(x, y, t)}{\partial t} = \kappa \left[\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \right] T(x, y, t) + J(x, y, t) - \Gamma [T(x, y, t) - T_{0}] \cdots (1)$$

である (Saarloos and Weeks, 1983; Kurtze et al., 1984)。ここで、T(x,y,t)は、点(x,y)時間 t での温度である。 κ は熱伝導係数、J(x,y,t)は、点(x,y)時間 t での注入エネルギー、 ρC_p は単位体積あたりの比熱、 $\Gamma[T(x,y,t)-T_0]$ は基板温度 T_0 での熱損失である。

注入エネルギーはレーザーや電流注入により供給さ れる。注入エネルギーは一定時間注入され、その後注 る。初期条件を $T(x,y,0)=T_0$ とする。

(1) 式の偏微分方程式は放物型である。(1) 式を 放物型方程式の陰解法である ADI 法 (alternating direction implicit method, 交互方向陰解法)(山崎, 1993)を用いて計算する。

ADI 法に従い、以下の手順で計算を行う。

(1) 空間変数と時間変数を差分化する。

x方向の空間メッシュをdxとし、 $x = i^* dx$ 、(i =0,1,2,…, M)とし、y方向の空間メッシュを dy とし、y= *j*dy*、(*j*=0,1,2,…, *N*)とする。時間メッシュは*dt*とし、 $t = k^* dt$ 、($k = 0, 1, 2, \cdots$)とする。これにより、温度 T(x,y,t) および注入エネルギーJ(x,y,t)を、 $T(x,y,t) \rightarrow T_{ijk}$ 、J(x,y,t) $\rightarrow J_{iik}$ と差分化する。

(2)時間微分と空間微分を差分化する。

時間の1階微分を

$$\frac{\partial T(x, y, t)}{\partial t} \rightarrow \frac{T_{i, j, k+1} - T_{i, j, k}}{dt} \qquad \cdots \qquad (2)$$

と差分化し、x 方向空間の2 階微分を

$$\frac{\partial^2 T(x, y, t)}{\partial x^2} \rightarrow \frac{T_{i+1, j, k} - 2T_{i, j, k} + T_{i-1, j, k}}{dx^2} \quad \cdot \quad \cdot \quad (3)$$

y方向空間の2階微分を

$$\frac{\partial^2 T(x, y, t)}{\partial y^2} \rightarrow \frac{T_{i,j+1,k} - 2T_{i,j,k} + T_{i,j-1,k}}{dy^2} \cdot \cdot \cdot (4)$$

と差分化する。

差分化後の(1)式は、

$$\begin{split} \rho C_p & \frac{T_{i,j,k+1} - T_{i,j,k}}{dt} \\ &= \kappa \bigg(\frac{T_{i+1,j,k} - 2T_{i,j,k} + T_{i-1,j,k}}{dx^2} + \frac{T_{i,j+1,k} - 2T_{i,j,k} + T_{i,j-1,k}}{dy^2} \bigg) \\ &+ J_{i,j,k} - \Gamma \big(T_{i,j,k} - T_0 \big) \end{split}$$

となる。

初期条件を、t = 0の時の初期温度 $T_{i,j,0}$ (i = 1,2,3,

入が停止されるとする。この場合の温度変化を計算す …, M)、(j=1,2,3,…, N)と定め、注入エネルギー分布 より、注入エネルギーJ_{i,i}0を定める。

(a)、(b)を順次繰り返すことで、(1)式の時間 発展が計算できる。

• • • (5)

3. 数値計算結果

注入エネルギー分布が長方形の場合の計算結果を示 す。注入エネルギー分布は対称性のない長方形である。 長方形の裾部分はガウス型で減少しているとする。

図1に、注入エネルギーの概形を示す。長方形の長辺*a*と短辺*b*の比*b/a*が0.75の場合である。長辺*a*=50µm(50×10⁶m)、短辺*b*=37.5µm(37.5×10⁶m)とする。

図1. 注入エネルギー分布。(a) 鳥瞰図、(b) 平面図、 (c) x 方向(短辺方向)から見た注入エネルギー分布 (断面図) (d) y方向(長辺方向)から見た注入エネ ルギー分布(断面図)

205-0 v(m) 図 1 (a) は鳥瞰図、(b) は平面図である。(c) は*x* 方向(短辺方向)から見た、(d) は*y* 方向(長辺 方向)から見た断面図である。

エネルギーの注入を 500ns (500×10⁹s) 間行い、停 止後の温度変化を計算する。

図2. 温度プロファイルの概形 (エネルギー注入開始 から 500ns 後 (注入停止時))

図2に、エネルギー注入開始から 500ns 後(注入停 止時)の温度プロファイルの概形を示す。図3に、800ns 後(注入エネルギーの停止後 300ns 経過)の温度プロ ファイルの概形を示す。全体の形を維持しながら、温 度が低下している。拡散により冷却が行われているこ とがわかる。

図3. 温度プロファイルの概形 (800ns の時、すなわち注入エネルギーを止めて 300ns 後)

図4に、温度プロファイルの概形のy方向の中心(y = 2.0×10⁴m)の断面(x 方向)の温度分布の時間変化

を示す。エネルギーが注入されている間温度が急激に 上昇し、停止後温度が急激に減少していることがわか る。

温度変化を詳しく見るため、図2に示す最高温度の 分布の中心部 $(x = 2.0 \times 10^4 \text{m})$ と周辺部として、傾斜 部 $(x = 1.7 \times 10^4 \text{m})$ 、裾部 $(x = 1.5 \times 10^4 \text{m})$ の温度に注 目する。図5に中心部 $(x = 2.0 \times 10^4 \text{m})$ と傾斜部 $(x = 1.7 \times 10^4 \text{m})$ 、裾部 $(x = 1.5 \times 10^4 \text{m})$ の温度の時間変化を 示す。

図5. 中心部と周辺部の温度の時間変化

温度はエネルギーが注入している間上昇している。 温度上昇は、基板温度との温度差が大きくなるに従い 拡散が大きくなるため上昇の割合が小さくなる。エネ ルギーの注入を停止した後、拡散により急速に温度が 降下し、冷却する。降下する割合は基板温度に近づく に従い小さくなるという拡散による結果が計算できた。

4. おわりに

相変化メモリー材料として有望である共晶系材料の

結晶化初期の現象を検討するため、2次元熱伝導方程 式の数値計算を行った。熱伝導方程式を放物型方程式 の陰解法である ADI 法(交互方向陰解法)を用いた。 その結果、注入エネルギーによる温度上昇(加熱)は 一様でなく、拡散の影響が見られた。また、エネルギ ーの注入停止後急速に温度が低下する。温度低下(冷 却)も一様ではなく、温度と基板温度との差が小さく なるに従い低下の割合が小さくなるという拡散による 結果が計算できた。

5. 謝辞

本研究全体を通して指導・助言いただいた奥田技術 事務所奥田昌宏所長(大阪府立大学名誉教授)に感謝 いたします。

参考文献

Douglas A. Kurtze, Wim van Saarloos, John D. Weeks. 1984. Front propagation in self-sustained and laser-driven explosive crystal growth: Stability analysis and morphological aspects. *Physical Review B* 30(3): 1398-1415.

奥田昌宏(監修). 2004. **次世代光記録材料**. シーエ ムシー出版.

Masahiro Okuda, Hirokazu Inaba, Shouji Usuda. 2004. Explosive Crystallization in Eutectic Materials of Phase Change Optical Memory. *Material Research Society Symposium Proceedings* 803: 225-232.

Masahiro Okuda, Hirokazu Inaba, Shouji Usuda. 2005. Photo-and current-induced crystallization of optical and electrical memory in phase change materials. *Proceedings of SPIE* 5966: 596606.

Wim van Saarloos, John D. Weeks. 1983. Surface Undulations in Explosive Crystallization: A Thermal Instability. *Physical Review Letters*. 51(12): 1046-1049.

山崎郭滋. 1993. **偏微分方程式の数値解法入門**. 森北 出版.